Skip to main content

Temporary deleterious mass mutations relate to originations of cockroach families

Abstract

Heritably transferred genome mutations extending phenotypic variability together with natural selection (alternatively with genetic drift, draft, stability, and passive selections) are the main conditions of species evolution. Intervals with high rates of detrimental mutations are virtually absent from the fossil record due to the difficulty of identifying them. Our evidence, based on living populations indicate that insect wing deformities represent heritable hypomorphic mutations that are similar to those observed in Chernobyl and Fukushima. Newly collected assemblages from two of the major diversification intervals, the Cretaceous (J/K or K1) Yixian Formation in China and Permian/Triassic (P/T) Poldars Formation in Russia, exhibit cockroach wing deformity rates of 27% and 42.5% (n = 120, 73), respectively. Wing deformity and principal, family rank origination rates (seven peaks each) correlate from the Mississippian/Pennsylvanian to the present (~ 320 Ma, n = 5059, r = 0.83, P = 0.005, rSpearman = 0.77), which is the first significant support for the association of detrimental mutations and evolution on the geological scale. It unexpectedly provides direct evidence for association of high-taxonomic rank changes and accumulation of mutations (which is neither trivial nor self-evident due to sophisticated patterns of gene flow), while this relationship is absent at species and genus levels. According to uncertainty of the numerical dating of non-marine sediments, a regular 62.05 ± 0.02 Ma periodicity of diversification and mass mutagenesis with the last peak at 3.95 ± 0.2 Ma (peaks possibly associated with origin and/or radiation of dinosaurs and frogs; birds and angiosperms; modern mammals; humans), is explanatory.

This is a preview of subscription content, access via your institution.

References

  1. Andersen P.L., Xu F. & Xiao W. 2008. Eukaryotic DNA damage tolerance and translesion synthesis through covalent modifications of PCNA. Cell. Res. 18 (1): 162–173. https://doi.org/10.1038/cr.2007.114

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. Anisyutkin L.N. 2002. Notes on the cockroaches of the subfamilies Pycnoscelinae and Diplopterinae from South-East Asia with description of three new species (Dictyoptera: Blaberidae). Zoosystematica Rossica 10 (2): 351–359.

    Google Scholar 

  3. Anisyutkin L.N. 2007. A new species of the genus Diploptera Saussure, 1864 from Borneo (Dictyoptera: Blaberidae: Diplopterinae). Zoosystematica Rossica 16 (2): 173–175.

    Google Scholar 

  4. Anisyutkin L.N. & Gorochov A.V. 2008. A new genus and species of the cockroach family Blattulidae from Lebanese Amber (Dictyoptera, Blattina). Paleontol. J. 42 (1): 43–46. https://doi.org/10.1134/S0031030108010061

    Google Scholar 

  5. Anisyutkin L.N. & Gröhn C. 2012. Novye tarakany (Dictyoptera: Blattina) iz Baltiĭskogo yantarya, s opisaniem novogo roda i vida: Stegoblatta irmgardgroehni [New cockroaches (Dictyopterra: Blattina) from Baltic amber, with the description of a new genus and species: Stegoblatta irmgardgroehni]. Trudy Zoologicheskogo Instituta RAS / Proceedings of the Zoological Institute RAS / 316 (3): 193–202.

    Google Scholar 

  6. Archibald S.B. & Mathewes R.W. 2000. Early Eocene insects from Quilchena, British Columbia, and their paleoclimatic implications. Can. J. Zool. 78 (8): 1441–1462. https://doi.org/10.1139/cjz-78-8-1441

    Article  Google Scholar 

  7. Aristov D.S. 2015. Insects from a new Ufimian Locality of Troitsa in the Perm Region, Russia. Paleontol. J. 49 (5): 496–500. https://doi.org/10.1134/S0031030115050032

    Article  Google Scholar 

  8. Aristov D.S., Bashkuev A.S., Golubeva V.K., Gorochov A.V., Karasev E.V., Kopylov D.S., Ponomarenko A.G., Rasnitsyn A.P., Rasnitsyn D.A., Sinitshenkova N.D., Sukatsheva I.D. & Vassilenko D.V. 2013. Fossil Insects of the Middle and Upper Permian of European Russia. Paleontol. J. 47 (7): 641–832. https://doi.org/10.1134/S0031030113070010

    Article  Google Scholar 

  9. Atri D. & Melott A.L. 2011. Biological implications of high-energy cosmic ray induced muon flux in the extragalactic shock model. Geophys. Res. Lett. 38 (19), L19203, 3 pp. https://doi.org/10.1029/2011GL049027

    Google Scholar 

  10. Bai M., Beutel R.G., Klass K.-D., Zhang W.W., Yang X.K. & Wipfler B. 2016. †Alienoptera - A new insect order in the roach-mantodean twilight zone. Gondwana Res. 39: 317–326. https://doi.org/10.1016/j.gr.2016.02.002

    Article  Google Scholar 

  11. Barbieri M. 2003. The Organic Codes. An Introduction to Semantic Biology. Cambridge Univ Press, 312 pp. ISBN: 0521531004

    Google Scholar 

  12. Barna P. 2014. Low diversity cockroach assemblage from Chernovskie Kopi in Russia confirms deformations at J/K boundary. Biologia 69 (5): 651–675. https://doi.org/10.2478/s11756-014-0349-9

    Article  Google Scholar 

  13. Barraclough T.G. & Savolainen V. 2001. Evolutionary rates and species diversity in flowering plants. Evolution 55 (4): 677–683. https://doi.org/10.1111/j.0014-3820.2001.tb00803.x

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. Batygin K. & Brown M.E. 2016. Evidence for a distant giant planet in the Solar system. Astron. J. 151 (2): 22, 12 pp. https://doi.org/10.3847/0004-6256/151/2/22

    Article  Google Scholar 

  15. Bekker-Migdisova E.E. 1961. Otryad Blattodea. Tarakanovye [Order Blattodea. Cockroach-like insects], 2, pp. 89–157. In: Rodendorf B.B., Bekker-Megdicova E.E., Martynova O.M. & Sharov A.G. (eds), Paleozoĭskoe nasekomye Kuznetskogo basseĭna [Paleozoic insects of the Kuznetsk Basin], Trudy Paleontologicheskogo Instituta Rossĭlskoĭ akademii nauk [Trans. Paleontol. Inst. AS SSSR], 85 (2), Nauka, Moscow, 705 pp.

    Google Scholar 

  16. Bechly G. 2007. ‘Blattaria’: cockroaches and roachoids, pp. 239–249. In: Martill D., Bechly G. & Loveridge R.F. (eds), The Crato Fossil Beds of Brazil: Window into an Ancient World, Cambridge University Press, Cambridge, 674 pp. ISBN: 9780-521-85867-0

  17. Benton M.J. 2004. Origin and relationships of Dinosauria, pp. 7–19. In: Weishampel D.B., Dodson P. & Osmolska H. (eds), The Dinosauria, Univ. California Press, Berkeley, 880 pp. ISBN: 0520941438, 9780520941434

    Google Scholar 

  18. Benton M.J., Walker A.D. 2002. Erpetosuchus, a crocodile-like basal archosaur from the Late Triassic of Elgin, Scotland. Zool. J. Linn. Soc. 136 (1): 25–47. https://doi.org/10.1046/j.1096-3642.2002.00024.x

    Article  Google Scholar 

  19. Béthoux O., Schneider J.W. & Klass K.-D. 2011. Redescription of the holotype of Phyloblatta gaudryi (Agnus, 1903) (Pennsylvanian; Commentry, France), an exceptionally well preserved stem-dictyopteran. Geodiversitas 33 (4): 625–635. https://doi.org/10.5252/g2011n4a4.

    Article  Google Scholar 

  20. Bohn H., Picker M., Klass K.-D. & Colville J. 2010. A Jumping Cockroach from South Africa, Saltoblattella montistabularis, gen. nov., spec. nov. (Blattodea: Blattellidae). Arthropod Syst. Phylogeny 68 (1): 53–69.

    Google Scholar 

  21. Bollati V. & Baccarelli V. 2010. Environmental epigenetics. Heredity 105: 105–112. https://doi.org/10.1038/hdy.2010.2

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. Bourguignon T., Lo N., Cameron S.L., Sobotnik J., Hayashi Y., Shigenobu S., Watanabe D., Roisin Y., Miura T. & Evans T.A. 2015. The evolutionary history of termites as inferred from 66 mitochondrial genomes. Mol. Biol. Evol. 32 (2): 406–421. https://doi.org/10.1093/molbev/msu308.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. Breen M.S., Kemena C., Vlasov P.K., Notredame C. & Kondrashov F.A. 2012. Epistasis as the primary factor in molecular evolution. Nature 490: 535–538. https://doi.org/10.1038/nature11510

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. Bulmer M.G. 1972. The genetic variability of polygenic characters under optimizing selection, mutation and drift. Genet. Res. 19 (1): 17–25. https://doi.org/10.1017/S0016672300

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. Carr M. 2002. DNA structure dependent checkpoints as regulators of DNA repair. DNA Repair (Amst.) 1 (12): 983–994. https://doi.org/10.1016/S1568-7864(02)00165-9

    Google Scholar 

  26. Castronovo F.P. 1999. Teratogen update: Radiation and Chernobyl. Teratology 60 (2): 100–106. https://doi.org/10.1002/(SICI)1096-9926(199908)60:2<100::AID-TERA14>3.0.CO;2-H

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. Cavalli-Sforza L.L. 2002. Human genetic and linguistic diversity, pp. E37–E53. In: Pagel M. (ed.), Encyclopedia of Evolution, Vol. 1, Oxford Univ Press, 556 pp. ISBN: 0-19-514864-9. 0.1093/acref/9780195122008.001.0001

    Google Scholar 

  28. Cave M.D. 1976. Absence of rDNA amplification in the uninucleolate oocyte of the cockroach Blattella germanica (Oorthoptera: Blattidae). J. Cell. Biol. 71 (1): 49–58. https://doi.org/10.1083/jcb.71.1.49

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. Che Y.L., Wang D., Shi Y., Du X.H., Zhao Y.Q., Lo N. & Wang Z.Q. 2016. A global molecular phylogeny and timescale of evolution for Cryptocercus woodroaches. Mol. Phylogenet. Evol. 98: 201–209. https://doi.org/10.1016/j.ympev.2016.02.005

    PubMed  Article  PubMed Central  Google Scholar 

  30. Cheng X.F., Zhang L.P., Yu D.N., Storey K.B. & Zhang J.Y. 2016. The complete mitochondrial genomes of four cockroaches (Insecta: Blattodea) and phylogenetic analyses within cockroaches. Gene 586 (1): 115–122. https://doi.org/10.1016/j.gene.2016.03.057.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. Cifuentes-Ruiz P., Vršanský P., Vega F.J., Cevallos-Ferriz S.R.S., González-Soriano E. & Delgado de Jesús C.R. 2006. Terrestrial arthropods from the Cerro del Pueblo Formation (Campanian Late Cretaceous), Difunta Group, NE Mexico. Geol. Carpath. 57 (5): 347–354.

    Google Scholar 

  32. Cohen K.M., Finney S., Gibbard P.L. 2013. International chronostratigraphic chart 2013/01. International Commision on Stratigraphy. https://doi.org/www.stratigraphy.org/ICSchart/ChronostratChart2013-01.pdf (accessed 06.08.2016)

    Google Scholar 

  33. Cornette J.L., Lieberman B.S. & Goldstein R.H. 2002. Documenting a significant relationship between macroevolutionary origination rates and Phanerozoic pCO2 levels. Proc. Natl. Acad. Sci. U.S.A. 99 (12): 7832–7835. https://doi.org/10.1073/pnas.122225499

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. Cui Y. & Ren D. 2013. Neotype designation for Sinonamuropteris ningxiaensis Peng, Hong et Zhang, 2005 (Grylloblattida, Late Carboniferous). Zootaxa 3694: 596–599. https://doi.org/10.11646/zootaxa.3694.6.7

    PubMed  Article  PubMed Central  Google Scholar 

  35. Čerňanský A. 2010. A revision of chamaeleonids from the Lower Miocene of the Czech Republic with description of a new species of Chamaeleo (Squamata, Chamaeleonidae). Geobios 43 (6): 605–613. https://doi.org/10.1016/j.geobios.2010.04.001

    Article  Google Scholar 

  36. Davis M., Hut P. & Muller R.A. 1984. Extinction of species by periodic comet showers. Nature 308: 715–717. https://doi.org/10.1038/308715a0

    Article  Google Scholar 

  37. Ding Q.H., Zhang L.D., Guo S.Z., Zhang C.J., Peng Y.D., Jia B., Chen S.W. & Xing D.H. 2001. The stratigraphic sequence and fossil bearing horizon of the Yixian Formation in western Liaoning, China. Geology and Resources 10 (4): 193–198. [in Chinese with English abstract]

    Google Scholar 

  38. Djernaes M., Klass K.-D., Picker M.D. & Damgaard J. 2012. Phylogeny of cockroaches (Insecta, Dictyoptera, Blattodea), with placement of aberrant taxa and exploration of out-group sampling. Sys. Entomol. 37 (1): 65–83. https://doi.org/10.1111/j.1365-3113.2011.00598.x

    Article  Google Scholar 

  39. Djernaes M., Klass K.D. & Eggleton P. 2015. Identifying possible sister groups of Cryptocercidae plus Isoptera: A combined molecular and morphological phylogeny of Dictyoptera. Molec. Phylogenet. Evol. 84: 284–303. https://doi.org/10.1016/j.ympev.2014.08.019

    PubMed  Article  PubMed Central  Google Scholar 

  40. Dmitriev V.J. & Ponomarenko A.G. 2002. Dynamics of insect taxonomic diversity, Chapter 3.1. pp. 325–330. In: Rasnitsyn A. P & Quicke D.L.J. (eds), History of Insects, Kluwer, Dodrecht, 516 pp. ISBN: 1-4020-0026-X

  41. Dubrovsky E.B., Dretzen G. & Bellard M. 1994. The Drosophila broad-complex regulates developmental changes in transcription and chromatin structure of the 67 B heat-shock gene cluster. J. Mol. Biol. 241 (3): 353–362. https://doi.org/10.1006/jmbi.1994.1512

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. Eldredge N. & Gould S.J. 1972. Punctuated equilibria: an alternative to phyletic gradualism, Chapter 5, pp. 82–115. In: Schopf T.J.M. (ed.), Models in Paleobiology, Freeman, Cooper & Company, San Francisco, 250 pp. ISBN-10: 0877353255, ISBN-13: 978-0877353256

  43. Eo S.H. & DeWoody J.A. 2010. Evolutionary rates of mitochondrial genomes correspond to diversification rates and to contemporary species richness in birds and reptiles. Proc. Roy. Soc. Ser. B Biol. Sci. Lond. 277 (1700): 3587–3592. https://doi.org/10.1098/rspb.2010.0965.

    CAS  Article  Google Scholar 

  44. Esnault C., Cornelis G., Heidmann O. & Heidmann T. 2013. Differential evolutionary fate of an ancestral primate endogenous retrovirus envelope gene, the EnvV Syncytin, captured for a function in placentation. PLoS Genetics 9 (3): e1003400. https://doi.org/10.1371/journal.pgen.1003400

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. Evans S.E. 2003. At the feet of the dinosaurs: the origin, evolution and early diversification of squamate reptiles (Lepidosauria: Diapsida). Biol. Rev. 78: 513–551. https://doi.org/10.1017/S1464793103006134

    PubMed  Article  PubMed Central  Google Scholar 

  46. Evans S.E. & Borsuk-B Ontheiałynicka M. 2009. The Early Triassic stem-frog Czatkobatrachus from Poland. Palaeontol. Pol. 65: 79–105.

    Google Scholar 

  47. Evans K.L. & Gaston K.J. 2005. Can the evolutionary-rates hypothesis explain species-energy relationships? Funct. Ecol. 19 (6): 899–915. https://doi.org/10.1111/j.1365-2435.2005.01046.x

    Article  Google Scholar 

  48. Flégr J. 1998. On the “Origin” of natural selection by means of speciation. Riv. Biol. — Biol. Forum 91: 291–304.

    Google Scholar 

  49. Flégr J. 2006. Zamrzlá evoluce aneb je to jinak pane Darwin [Frozen Evolution. Or, that’s not the way it is, Mr. Darwin]. Academia, Praha, 328 pp. ISBN: 978-80-200-1526-6

    Google Scholar 

  50. Flégr J. 2015. Evoluční tárí aneb o původů rodů. Academia, Praha, 404 pp. ISBN: 978-80-200-2481-7

    Google Scholar 

  51. Foote M. 2000. Originations and extinction components of taxonomic diversity: General problems. Paleobiology 26 (sp. 4): 74–102. https://doi.org/10.1666/0094-8373(2000)26[74:OAECOT]2.0.CO;2

    Article  Google Scholar 

  52. Friedberg E.C., Wagner R. & Radman M. 2002. Specialized DNA polymerases, cellular survival, and the genesis of mutations. Science 296 (5573): 162–165. https://doi.org/10.1126/science.1070236

    Google Scholar 

  53. Fujiyama I. 1973. Mesozoic insect fauna of East Asia. Part I. Introduction and Upper Triassic faunas. Bull. Natl. Sci. Mus. Tokyo C 16 (2): 331–391.

    Google Scholar 

  54. Gao T, Shih C., Engel M.S. & Ren D. 2016. A new xyelotomid (Hymenoptera) from the Middle Jurassic of China displaying enigmatic venational asymmetry. BMC Evol. Biol. 16: 155. https://doi.org/10.1186/s12862-016-0730-0

    PubMed  PubMed Central  Article  Google Scholar 

  55. Gao G.Q. & Shubin N.H. 2003. Earliest known crown-group salamanders. Nature 422: 422–428. https://doi.org/10.1038/nature01491

    Article  CAS  Google Scholar 

  56. Gillooly J.F., Allen A.P., West G.B. & Brown J.H. 2005. The rate of DNA evolution: Effects of body size and temperature on the molecular clock. Proc. Natl. Acad. Sci. USA 102 (11): 140–145. https://doi.org/10.1073/pnas.0407735101

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  57. Gillman L.N., Keeling D.J., Gardner R.C. & Wright S.D. 2010. Faster evolution of highly conserved DNA in tropical plants. J. Evol. Biol. 23 (6): 1327–1330. https://doi.org/10.1111/j.1420-9101.2010.01992.x.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  58. Godefroit P., Cau A., Hu D.Y., Escuillié F., Wu W. & Dyke G. 2013. A Jurassic avialan dinosaur from China resolves the early phylogenetic history of birds. Nature 498: 359–362. https://doi.org/10.1038/nature12168

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  59. Goldie X., Lanfear R. & Bromham L. 2011. Diversification and the rate of molecular evolution: no evidence of a link in mammals. BMC Evol. Biol. 11: 286. https://doi.org/10.1186/1471-2148-11-286

    PubMed  PubMed Central  Article  Google Scholar 

  60. Gorokhov A.V. 2007. New and little known orthopteroid insects (Polyneoptera) from fossil resins: Communication 2. Paleontol. J. 41 (2): 156–166. 10.1134

    Article  Google Scholar 

  61. Gould S.J. & Eldredge N. 1993. Punctuated equilibrium comes of age. Nature 366: 223–227. https://doi.org/10.1038/366223a0

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  62. Gradstein F.M., Ogg J.G. & Smith A.G. (eds). 2005. A Geologic Time Scale 2004 (With Geologic Time Scale Poster), 610 pp. ISBN-13: 9780521786737, ISBN-10: 0521786738)

    Book  Google Scholar 

  63. Gradstein F.M., Ogg J.G., Schmitz M.D. & Ogg G.M. (eds). 2012. The Geologic Time Scale 2012. 1st ed. Amsterdam, Elsevier, 1176 pp. ISBN: 978-0-44-459425-9.

    Google Scholar 

  64. Griffiths A.J.F., Wessler S.R., Lewontin R.C. & Carrol S.B. 2008. Introduction to Genetic Analysis. 10. Freeman and Co, New York, 838 pp. ISBN: 0716768879, 9780716768876

    Google Scholar 

  65. Grimaldi D. & Engel M. 2005. Evolution of Insects. Cambridge Univ Press, New York, 772 pp. ISBN-10: 0521821495, ISBN-13: 978-0521821490

    Google Scholar 

  66. Guo Y., Béthoux O., Gu J. & Ren D. 2013. Wing venation homologies in Pennsylvanian ‘cockroachoids’ (Insecta) clarified thanks to a remarkable specimen from the Pennsylvanian of Ningxia (China). J. Syst. Palaeontol. 11 (1): 41–46. https://doi.org/10.1080/14772019.2011.637519

    Article  Google Scholar 

  67. Hesse-Honegger C. 2002. Heteroptera. Das Schöne und das Andere oder Bilder einer mutierenden Welt. Steidl Verlag, Göttingen, 312 pp. ISBN-10: 3882433604, ISBN-13: 9783882433609

    Google Scholar 

  68. Hiyama A., Nohara C., Kinjo S., Taira W., Gima S., Tanahara A. & Otaki J.M. 2012. The biological impacts of the Fukushima nuclear accident on the pale grass blue butterfly. Sci. Rep. 2: 570. https://doi.org/10.1038/srep00570

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  69. Hmich D., Schneider J.W., Saber H. & El Wartiti M. 2003. First Permocarboniferous insects (blattids) from North Africa (Morocco) - implications on paleobiogeography and palaeo-climatology. Freiberger Forschungshefte C 499 (11): 117–134.

    Google Scholar 

  70. Hmich D., Schneider J.W., Saber H. & El Wartiti M. 2005. Spiloblattinidae (Insecta, Blattida) from the Carboniferous of Morocco, North Africa - Implications for Biostratigraphy, pp. 111–114. In: Lucas S.G. & Zeigler K.E. (eds), The Nonmarine Permian, New Mexico Museum of Natural History and Science Bulletin No. 30, 362 pp.

    Google Scholar 

  71. Hmich D., Schneider J.W., Saber H., Voigt S. & El Wartiti M. 2006. New continental Carboniferous and Permian faunas of Morocco: implications for biostratigraphy, palaeobiogeography and palaeoclimate, pp. 297–324. In: Lucas S.G., Cassinis G., & Schneider J.W. (eds), Non-Marine Permian Biostratigraphy and Biochronology, Geological Society, London, Special Publications 265, 351 pp. https://doi.org/10.1144/GSL.SP.2006.265.01.01. ISBN-10: 1-86239-206-4, ISBN-13: 978-1-86239-206-9

    Google Scholar 

  72. Hopkins H. 2014. A revision of the genus Arenivaga (Rehn) (Blattodea, Corydiidae), with descriptions of new species and key to the males of the genus. ZooKeys 384: 1–256. https://doi.org/10.3897/zookeys.384.6197

    Article  Google Scholar 

  73. Hörnig M.K., Haug J.T. & Haug C. 2013. New details of Santanmantis axelrodi and the evolution of the mantodean morphotype. Palaeodiversity 6: 157–168.

    Google Scholar 

  74. Huang J.-H., Lozano J. & Belles X. 2013. Broad-complex functions in postembryonic development of the cockroach Blattella germanica shed new light on the evolution of insect metamorphosis. Biochim. Biophys. Acta 1830 (1): 2178–2187. https://doi.org/10.1016/j.bbagen.2012.09.025.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  75. Huber P., McDonald N.G. & Olsen P.E. 2003. Early Jurassic insects from the Newark supergroup, Northeastern United States, pp. 206–223. In: LeTourneau P.M. & Olsen P.E. (eds), The Great Rift Valleys of Pangea in Eastern North America, Volume 2, Sedimentology, Stratigraphy, Paleontology, Columbia University Press, New York, 248 pp. ISBN: 0-231-12676-X, 9780231126762

    Google Scholar 

  76. Iorio L 2009. Constraints on planet X/Nemesis from Solar System’s inner dynamics. Mon. Not. Roy. Astron. Soc. 400 (1): 346–353. https://doi.org/10.1111/j.1365-2966.2009.15458.x

    Article  Google Scholar 

  77. Irisarri I., San Mauro D., Abascal F., Ohler A., Vences M. & Zardoya R. 2012. The origin of modern frogs (Neobatrachia) was accompanied by acceleration in mitochondrial and nuclear substitution rates. BMC Genomics 13: 626. https://doi.org/10.1186/1471-2164-13-626.

    PubMed  PubMed Central  Article  Google Scholar 

  78. Jablonski D., Belanger C., Berke S., Huang S., Krug A.Z., Roy K., Tomasovych A. & Valentine J.W. 2013. Out of the tropics, but how? Fossils, bridge species, and thermal ranges in the dynamics of the marine latitudinal diversity gradient. Proc. Natl. Acad. Sci. USA 110 (26): 10487–10494. https://doi.org/10.1073/pnas.1308997110

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  79. Janecka J., Chowdhary B. & Murphy W. 2012. Exploring the correlations between sequence evolution rate and phenotypic divergence across the Mammalian tree provides insights into adaptive evolution. J. Biosci. 37 (5): 897–909. https://doi.org/10.1007/s12038-012-9254-y

    PubMed  Article  PubMed Central  Google Scholar 

  80. Jeon M.G. & Park Y.C. 2015. The complete mitogenome of the wood-feeding cockroach Cryptocercus kyebangensis (Blattodea: Cryptocercidae) and phylogenetic relations among cockroach families. Animal Cells and Systems 19 (6): 432–438. https://doi.org/10.1080/19768354.2015.1105866

    Article  Google Scholar 

  81. Ji Q., Liu Y.G. & Jiang X.J. 2011. On the Lower Cretaceous in Yixian county of Jinzhou city, Western Liaoning, China. Acta Geol. Sin.-Eng. Ed. 85 (2): 437–442. https://doi.org/10.1111/j.1755-6724.2011.00411.x

    CAS  Article  Google Scholar 

  82. Ji Q., Luo Z.X., Yuan C.X., Wible J.R. Zhang J.P. & Georgi J.A. 2002. The earliest known eutherian mammal. Nature 416: 816–822. https://doi.org/10.1038/416816a

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  83. Johnson L.J. & Tricker P.J. 2010. Epigenomic plasticity within populations: its evolutionary significance and potential. Heredity 105: 113–121. https://doi.org/10.1038/hdy.2010.25

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  84. Kaidanov L.Z., Bolshakov V.N., Tzygvintzev P.N. & Gvozdev V.A. 1991. The sources of genetic variability in highly inbred long-term selected strains of Drosophila melanogaster. Genetica 85 (1): 73–78. https://doi.org/10.1007/BF00056108

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  85. Kauffman S. 2004. Autonomous Agents, Part VI, Chapter 29, pp. 654–666. In: Barrow J.D., Davies P.C.W. & Harper C.L. Jr. (eds), Science and Ultimate Reality: Quantum Theory, Cosmology, and Complexity, Cambridge University Press, 742 pp. ISBN: 9780521831130

    Chapter  Google Scholar 

  86. Kielan-Jaworowska Z., Cifelli R.L. & Luo Z.X. 2004. Mammals from the Age of Dinosaurs-origins, Evolution, and Structure. Columbia University Press, New York, 648 pp. ISBN-10: 0231119186, ISBN-13: 978-0231119184

    Book  Google Scholar 

  87. Kikuchi R. 2010. External forces acting on the Earth’s climate: an approach to understanding the complexity of climate change. Energy & Environment 21 (8): 953–968. https://doi.org/10.1260/0958-305X.21.8

    CAS  Article  Google Scholar 

  88. Kolbe S.E., Lockwood R. & Hunt G. 2011. Does morphological variation buffer against extinction? A test using veneroid bivalves from the Plio-Pleistocene of Florida. Paleobiology 37 (3): 355–368. https://doi.org/10.1666/09073.1

    Article  Google Scholar 

  89. Krassilov V.A. 2003. Terrestrial Paleoecology and Global Change. Series: Russian Academic Monographs 1, Pensoft, Sofia, Moscow, 480 pp. ISBN: 9546421537

    Google Scholar 

  90. Kunkel J.G. 2006. Are cockroaches resistant to radiation? https://doi.org/www.bio.umass.edu/biology/kunkel/cockroach_faq.html#Q5 (accessed 10.06.2006)

    Google Scholar 

  91. Labandeira C. 1994. A compendium of fossil insect families. Milwaukee Public Museum Contributions in Biology and Geology 88: 1–87.

    Google Scholar 

  92. Labandeira C. & Sepkoski J.J. 1993. Insect diversity in the fossil record. Science 261: 310–315. https://doi.org/10.1126/science.11536548

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  93. Lancaster L.T. 2010. Molecular evolutionary rates predict both extinction and speciation in temperate angiosperm lineages. BMC Evol. Biol. 10: 162. https://doi.org/10.1186/1471-2148-10-162

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  94. Lande R. 1976. The maintenance of genetic variability by mutation in a polygenic character with linked loci. Genet. Res. 26 (3): 221–235. https://doi.org/10.1017/S0016672300016037

    Article  Google Scholar 

  95. Lanfear R., Ho S.Y.W., Love D. & Bromham L. 2010. Mutation rate is linked to diversification in birds. Proc. Natl. Acad. Sci. USA 107 (47): 20423–20428. https://doi.org/10.1073/pnas.1007888107

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  96. Lee S.W. 2014. New Lower Cretaceous basal mantodean (Insecta) from the Crato Formation (NE Brazil). Geol. Carpath. 65 (4): 285–292. https://doi.org/10.2478/geoca-2014-0019

    Article  Google Scholar 

  97. Lee S.W. 2016. Taxonomic diversity of cockroach assemblages (Blattaria, Insecta) of the Aptian Crato Formation (Cretaceous, NE Brazil). Geol. Carpath. 67 (5): 433–450. https://doi.org/10.1515/geoca-2016-0027

    Google Scholar 

  98. Legendre F., Nel A., Svenson G.J., Robillard T., Pellens R. & Grandcolas P. 2015. Phylogeny of Dictyoptera: dating the origin of cockroaches, praying mantises and termites with molecular data and controlled fossil evidence. PLoS One 10 (7): e0130127. https://doi.org/10.1371/journal.pone.0130127

    Article  CAS  Google Scholar 

  99. Li X. & Wang Z. 2015. A taxonomic study of the beetle cockroaches (Diploptera Saussure) from China, with notes on the genus and species worldwide (Blattodea: Blaberidae: Diplopterinae). Zootaxa 4018 (1): 35–56. https://doi.org/10.11646/zootaxa.4018.1.2.

    PubMed  PubMed Central  Article  Google Scholar 

  100. Liang J.-H., Vršanský P. & Ren D. 2012. Variability and symmetry of a Jurassic nocturnal predatory cockroach (Blattida: Raphidiomimidae). Rev. Mex. Cienc. Geol. 29 (2): 411–421.

    Google Scholar 

  101. Liang J.-H., Yinxia G., Ren D. & Shih C. 2010. Blattodea — Survivors of the Fittest, Chapter 8, pp. 73–83. In: Ren D., Shih C., Gao T. & Yao Y.Y. (eds), Silent stories - Insect Fossil Treasures from Dinosaur Era of the Northeastern China, Science Press, Beijing, 322 pp. ISBN-10: 7030281918, ISBN-13: 9787030281913

    Google Scholar 

  102. Lucas S.G., Barrick J.E., Krainer K. & Schneider J.W. 2013. The Carboniferous-Permian boundary at Carrizo Arroyo, Central New Mexico, USA. Stratigraphy 10 (3): 153–170.

    Google Scholar 

  103. Lucańas C.C. & Lit I.L. Jr. 2016. Cockroaches (Insecta, Blattodea) from caves of Polillo Island (Philippines), with description of a new species. Subterranean Biol. 19: 51–64. https://doi.org/10.3897/subtbiol.19.9804

    Article  Google Scholar 

  104. Luhman K.L. & Sheppard S.S. 2014. Characterization of high proper motion objects from the wide-field infrared survey explorer. Astrophys. J. 787 (2): 126–126. https://doi.org/10.1088/0004-637X/787/2/126

    Article  CAS  Google Scholar 

  105. Lukashevich E.D. 2011. New nematocerans (Insecta: Diptera) from the Late Jurassic of Mongolia. Paleontol. J. 45 (6): 620–628. https://doi.org/10.1134/S0031030111060098

    Article  Google Scholar 

  106. Martínez-Delclós X. 1993. Blátidos (Insecta, Blattodea) del Cretácico Inferior de Espańa. Familias Mesoblattinidae, Blattulidae y Poliphagidae. Boletín Geológico y Minero 104 (5): 52–74

    Google Scholar 

  107. Martins-Neto R.G., Mancuso A. & Gallego O.F. 2005. La fauna de insectos triásicos de la Argentina. Blattoptera de la Formación Los Rastros (cuenca del Bermejo) provincia de La Rioja [The Triassic insect fauna from Argentina. Blattoptera from the Los Rastros Formation (Bemejo Basin), La Rioja Province.] Ameghiniana 42 (4): 705–723.

    Google Scholar 

  108. Martynov A.V. 1937. Liasovye nasekomye Shuraba I Kizil-Kin [Liassic insects from Shurab and Kisyl-Kiya], Part II. Blattodea. Trudy Paleontologicheskogo Instituta Akademii Nauk SSSR 7 (1): 183–232.

    Google Scholar 

  109. Mayr E. 1976. Evolution and the Diversity of Life. 3rd ed. Belknap Press of Harvard University Press, Cambridge, 721 pp. ISBN: 0674271041, 9780674271043

    Google Scholar 

  110. Mayr G., Pohl B. & Peters D.S. 2005. A well-preserved Archaeopteryx specimen with theropod features. Science 310: 1483–1486. https://doi.org/10.1126/science.1120331

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  111. McDonald J.F. 1995. Transposable elements - possible catalysts of organismic evolution. Trends Ecol. Evol. 10 (1–3): 123–126. https://doi.org/10.1016/S0169-5347(00)89012-6

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  112. Medvedev M. & Melott A. 2006. The cosmogenic origin of the 62 Myr biodiversity oscillation. Astrobiology 6 (1): 240.

    Google Scholar 

  113. Melott A.L. & Bambach R.K. 2010. Nemesis reconsidered. Mon. Not. Roy. Astron. Soc. 407 (1): L99–L102. https://doi.org/10.1111/j.1745-3933.2010.00913.x

    Article  Google Scholar 

  114. Melott A.L. & Bambach R.K. 2011. A ubiquitous similar to 62-Myr periodic fluctuation superimposed on general trends in fossil biodiversity. II. Evolutionary dynamics associated with periodic fluctuation in marine diversity. Paleobiology 37 (3): 383–408. https://doi.org/10.1666/09055.1

    Article  Google Scholar 

  115. Melott A.L. & Bambach R.K. 2013. Do periodicities in extinction with possible astronomical connections survive a revision of the geological timescale? Astroph. J. 773 (1): 6. https://doi.org/10.1088/0004-637X/773/1/6

    Google Scholar 

  116. Melott A.L., Bambach R.K., Petersen K.D. & McArthur J.M. 2012. An ?60-million-year periodicity is common to marine 87Sr/86Sr, fossil biodiversity, and large-scale sedimentation: What does the periodicity reflect? J. Geol. 120 (2): 217–226. https://doi.org/10.1086/663877.

    CAS  Article  Google Scholar 

  117. Mikó I., Copeland R.S., Balhoff J.P., Yoder M.J. & Deans A.R. 2014. Folding wings like a cockroach: A review of transverse wing folding ensign wasps (Hymenoptera: Evaniidae: Afrevania and Trissevania) PLoS One 9 (5): e94056. https://doi.org/10.1371/journal.pone.0094056

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  118. Mikulíček P., Jandzik D., Fritz U., Schneider C. & Široký P. 2013. AFLP analysis shows high incongruence between genetic differentiation and morphology-based taxonomy in a widely distributed tortoise. Biol. J. Linn. Soc. 108 (1): 151–160. https://doi.org/10.1111/j.1095-8312.2012.01999.x

    Article  Google Scholar 

  119. Mugat B., Brodu V., Kejzlarova-Lepesant J., Antoniewski C., Bayer C.A., Fristrom J.W. & Lepesant J.A. 2000. Dynamic expression of broad-complex isoforms mediates temporal control of an ecdysteroid target gene at the onset of Drosophila metamorphosis. Devel. Biol. 227 (1): 104–117. https://doi.org/10.1006/dbio.2000.9879

    CAS  Article  Google Scholar 

  120. Nalepa C.A. 2015. Origin of termite eusociality: trophallaxis integrates the social, nutritional, and microbial environments. Ecol. Entomol. 40 (4): 323–335. https://doi.org/10.1111/een.12197

    Article  Google Scholar 

  121. Nicholson D.B., Mayhew P.J. & Ross A.J. 2015. Changes to the fossil record of insects through fifteen years of discovery. PLoS One 10 (7): e0128554. https://doi.org/10.1371/journal.pone.0128554

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  122. Nicholson D.B., Ross A.J. & Mayhew P.J. 2014. Fossil evidence for key innovations in the evolution of insect diversity. Proc. Roy. Soc. B 281 (1793): 20141823. https://doi.org/10.1098/rspb.2014.1823

    Article  Google Scholar 

  123. Novozhenov Y.I. & Korobizyn N.M. 1972. Aberrativnaya izmenchivosf v prirodnykh populyatsiyakh nasekomykh [Aberrant variation in natural insect populations]. Zh. Obshch. Biol. 33 (3): 315–324.

    PubMed  PubMed Central  Google Scholar 

  124. Oružinský R. & Vršanský P. 2017. Cockroach forewing area and venation variabilities relate. Biologia 72: 813–817. https://doi.org/10.1515/biolog-2017-0090

    Article  Google Scholar 

  125. Padian K. 1997. Origin of Dinosaurs, pp. 481–486. In: Currie P.J. & Padian K. (eds), Encyclopedia of Dinosaurs, Academic Press, New York, 869 pp. ISBN: 9780122268106

  126. Papier F., Grauvogel-Stamm L. & Nel A. 1994 Subioblatta undulata n. sp., a new Blattodea (Subioblattidae Schneider) from the Upper Bunter (Anisian) of the Vosges Mountains (France). Morphology, systematics and affinities. Neues Jahrbuch fur Geologie und Paläontologie, Monatshefte 1994 (5): 277–290.

    Google Scholar 

  127. Papier F. & Grauvogel-Stamm L. 1995. Les Blattodea du Trias: Le genre Voltziablatta n. gen. du Buntsandstein supérieur des Vosges (France) [The Triassic Blattodea: The genus Voltziablatta n. gen. from the Upper Bunter of the Vosges Mountains (France)]. Paleontographica A 235 (4–6): 141–162.

    Google Scholar 

  128. Picker M., Colville J.F. & Burrows M. 2012. A cockroach that jumps. Biol. Lett. 8 (3): 390–392. https://doi.org/10.1098/rsbl.2011.1022

    PubMed  Article  PubMed Central  Google Scholar 

  129. Piton L.E. 1936. Les Orthopteres tertiaires d’Auvergne. Misc. Entomol. 37: 77–79.

    Google Scholar 

  130. Piton L.E. 1940. Paléontologie du gisement éocčne de Menat (Puy-de-Dôme) (flore et faune). Mémoires de la Société d’Histoire Naturelle d’Auvergne, Clermont-Ferrand 1: 1–303.

    Google Scholar 

  131. Poinar G. & Brown A.E. 2017. An exotic insect Aethiocarenus burmanicus gen. et sp. nov. (Aethiocarenodea ord. nov., Aethiocarenidae fam. nov.) from mid-Cretaceous Myanmar amber. Cretaceous Res. 72: 100–104. https://doi.org/10.1016/j.cretres.2016.12.011

    Article  Google Scholar 

  132. Ponomarenko A.G. 2016. Insects during the time around the Permian-Triassic crisis. Paleontol. J. 50 (2): 174–186. https://doi.org/10.1134/S0031030116020052

    Article  Google Scholar 

  133. Potgieter M., Ferreira S. & Du Toit S. 2011. Galactic cosmic rays in the dynamic heliosphere, pp. 441–453. In: Giani S., Leroy C. & Rancoita P.G. (eds), Cosmic Rays For Particle and Astroparticle Physics Book Series: Astroparticle Particle Space Physics Radiation Interaction Detectors and Medical Physics Application Vol. 6, 668 pp. ISBN: 978-981-4329-02-6

    CAS  Article  Google Scholar 

  134. Qin J. & Li L. 2003. Molecular anatomy of the DNA damage and replication checkpoints. Radiat. Res. 159 (2): 139–148. https://doi.org/10.1667/0033-7587(2003)159[0139:MAOTDD]2.0.CO2

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  135. Rage J.C. & Roček Z. 1989. Redescription of Triadobatrachus massinoti (Piveteau, 1936) an anuran amphibian from the Early Triassic. Palaeontographica A 206 (1–3): 1–16.

    Google Scholar 

  136. Ramel C. 1989. The nature of spontaneous mutations. Mutat. Res. 212 (1): 33–42. https://doi.org/10.1016/0027-5107(89)90020-1

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  137. Rasnitsyn A.P. 2002. Protsess evolyutsii i metodologya sistematiki [Evolutionary process and methodology of systematics]. Ňr. Russ. Entomol. Obshch. [Proc. Russ. Entomol. Soc.] 73: 1–108.

    Google Scholar 

  138. Rasnitsyn A.P., Bashkuev A.S., Kopylov D.S., Lukashevich E.D., Ponomarenko A.G., Popov J.A., Rasnitsyn D.A., Ryzhkova O.V., Sidorchuk E.A., Sukatsheva I.D. & Vorontsov D.D. 2016. Sequence and scale of changes in the terrestrial biota during the Cretaceous (based on materials from fossil resins). Cretaceous Res. 61: 234–255. https://doi.org/10.1016/j.cretres.2015.12.025

    Article  Google Scholar 

  139. Rasnitsyn A.P. & Quicke D.L.J. (eds). 2002. History of Insects. Kluwer Academic Publishers, New York, Boston, Dordrecht, London, Moscow, 517 pp. ISBN: 978-1-4020-0026-3

    Book  Google Scholar 

  140. Raup D.M. & Sepkoski J.J. Jr. 1982. Mass extinctions in the marine fossil record. Science 215: 1501–1503. https://doi.org/10.1126/science.215.4539.1501

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  141. Reddy G.P.V. & Chippendale G.M. 1972. Observations on the nutritional requirements of the northwestern corn borer Diatraea grandiosella. Entomol. Exp. Appl. 15 (1): 51–60. https://doi.org/10.1111/j.1570-7458.1972.tb02083.x

    CAS  Article  Google Scholar 

  142. Rifkin S.A., Houle D., Kim J. & White K.P. 2005. A mutation accumulation assay reveals a broad capacity for rapid evolution of gene expression. Nature 438: 220–223. https://doi.org/10.1038/nature04114

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  143. Ross A.J. 2001. The Purbeck and Wealden cockroaches and their potential use in biostratigraphy. Thesis (Ph.D.), University of Brighton.

    Google Scholar 

  144. Ross A.J. 2012. Testing decreasing variability of cockroach forewings through time using four Recent species: Blattella germanica, Polyphaga aegyptiaca, Shelfordella lateralis and Blaberus craniifer, with implications for the study of fossil cockroach forewings. Insect Sci. 19 (2): 129–142. https://doi.org/10.1111/j.1744-7917.2011.01465.x

    Article  Google Scholar 

  145. Russell P.J. 2002. IGenetics. Benjamin Cummings, San Francisco, 828 pp. ISBN: 0805345531 9780805345537

    Google Scholar 

  146. Sendi H. & Azar D. 2017. New aposematic and presumably repellent bark cockroach from Lebanese amber. Cretaceous Res. 72: 13–17. https://doi.org/10.1016/j.cretres.2016.11.013

    Article  Google Scholar 

  147. Sereno P.C. 1999. The evolution of dinosaurs. Science 284: 2137–2147. https://doi.org/10.1126/science.284.5423.2137

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  148. Shaviv N.J. 2003. The spiral structure of the Milky Way, cosmic rays, and ice age epochs on Earth. New Astronomy 8 (1): 39–77. https://doi.org/10.1016/S1384-1076(02)00193-8

    Article  Google Scholar 

  149. Shaviv N.J. 2005. On the link between cosmic rays and terrestrial climate. Int. J. Mod. Phys. A 20: 6662–6665. https://doi.org/10.1142/S0217751X05029733

    CAS  Article  Google Scholar 

  150. Shaviv N.J. & Veizer J. 2003. Celestial driver of Phanerozoic climate? GSA Today 13 (7): 4–10.

    Article  Google Scholar 

  151. Shcherbakov D.E. 2008. On Permian and Triassic insect faunas in relation to biogeography and the Permian-Triassic crisis. Paleontol. J. 42 (1): 15–31. https://doi.org/10.1134/S0031030108010036

    Google Scholar 

  152. Shcherbakov D.E. 2013. Permian ancestors of Hymenoptera and Raphidioptera. Zookeys 358: 45–67. https://doi.org/10.3897/zookeys.358.6289

    Article  Google Scholar 

  153. Shrivastav M., De Haro L.P. & Nickoloff J.A. 2008. Regulation of DNA double-strand break repair pathway choice. Cell. Res. 18 (1): 134–147. https://doi.org/10.1038/cr.2007.111

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  154. Shubin N.H. & Jenkins F.A. Jr. 1995. An Early Jurassic jumping frog. Nature 377: 49–52. https://doi.org/10.1038/377049a0

    CAS  Article  Google Scholar 

  155. Schmied H. 2009. Cockroaches (Blattodea) from the middle Eocene of Messel (Germany). Diploma thesis, University of Bonn, 81 pp.

    Google Scholar 

  156. Schneider J.W. 1977. Zur Variabilität der Flügel paläozoischer Blattodea (Insecta), Teil I. Freiberger Forschungshefte C 326: 87–105.

    Google Scholar 

  157. Schneider J.W. 1978a. Zur Variabilität der Flügel paläozoischer Blattodea (Insecta), Teil II. Freiberger Forschungshefte C 334: 21–39.

    Google Scholar 

  158. Schneider J.W. 1978b. Zum Taxonomie und Biostratigraphie der Blattodea (Insecta) des Karbon und Perm der DDR. Freiberger Forschungshefte C 340: 1–152.

    Google Scholar 

  159. Schneider J.W. 1978c. Revision der Poroblattinidae (Insecta, Blattodea) des europäischen und nordamerikanischen Oberkarbon und Perm. Freiberger Forschungshefte C 342: 55–66.

    Google Scholar 

  160. Schneider J.W. 1980a. Zur Entomofauna des Jungpaläozoikums der Boskovicer Furche (CSSR), Teil I: Mylacridae (Insecta, Blattodea). Freiberger Forschungshefte C 357: 43–55.

    Google Scholar 

  161. Schneider J.W. 1980b. Zur Taxonomie der jungpaläozoischen Neorthroblattinidae (Insecta, Blattodea). Freiberger Forschungshefte C 348: 31–39.

    Google Scholar 

  162. Schneider J.W. 1983. Die Blattodea (Insecta) des Paläozoikums, Teil 1: Systematik, Ökologie und Biostratigraphie. Freiberger Forschungshefte C 382: 107–146.

    Google Scholar 

  163. Schneider J.W. 1984. Die Blattodea (Insecta) des Paläozoikums, Teil 2: Morphogenese der Flügelstrukturen und Phylogenie. Freiberger Forschungshefte C 391: 5–34.

    Google Scholar 

  164. Schneider J.W., Lucas S.G. & Barrick J. 2013. The Early Permian age of the Dunkard Group, Appalachian basin, U.S.A., based on spiloblattinid insect biostratigraphy. Int. J. Coal Geol. 119 (SI): 88–92. https://doi.org/10.1016/j.coal.2013.07.019

    CAS  Article  Google Scholar 

  165. Schneider J.W., Lucas S.G. & Rowland J.M. 2004. The Blattida (Insecta) fauna of Carrizo Arroyo, New Mexico — Biostratigraphic link between marine and nonmarine Pennsylvanian/Permian boundary profiles, pp. 247–261. In: Lucas S.G. & Zeigler K.E. (eds), Carboniferous-Permian Transition at Carrizo Arroyo, Central New Mexico. New Mexico Museum of Natural History and Science, Bulletin No. 25, 300 pp.

    Google Scholar 

  166. Schneider J.W. & Werneburg R. 1993. Neue Spiloblattinidae (Insecta, Blattodea) aus dem Oberkarbon und Unterperm von Mitteleuropa sowie die Biostratigraphie des Rotliegend. Veroff. Naturhist. Mus. Schleusingen 7/8: 31–52.

    Google Scholar 

  167. Schneider J.W. & Werneburg R. 2006. Insect biostratigraphy of the European late Carboniferous and early Permian, pp. 325–336. In: Lucas S.G., Cassinis G. & Schneider J.W. (eds), Nonmarine Permian Biostratigraphy and Biochronology, Geological Society, London, Special Publications 265, 352 pp. ISBN: 1-86239-206-4, 978-1-86239-206-9

    Article  Google Scholar 

  168. Schwarzbach M. 1939. Die älteste Insektenflügel. Bemerkungen zu einem oberschlesischen Funde. Jahresberichte und Mitteilungen des Oberrheinischen Geologischen Vereines N.F. 1939: 28–30.

    Google Scholar 

  169. Signor P.W. & Lipps J.H. 1982. Sampling bias, gradual extinction patterns, and catastrophes in the fossil record, pp. 291–296. https://doi.org/10.1130/SPE190-p291. In: Silver L.T. & Schultz P.H. (eds), Geological Implications of Impacts of Large Asteroids and Comets on the Earth, Geological Society of America, Special Paper 190, 546 pp. ISBN: 9780813721903. https://doi.org/10.1130/SPE190

  170. Sinitshenkova N.D. 2000. Novye podenky iz verkhnemezozoĭskogo zabaĭkal’skogo mesonakhozhdeniyab Chernovskie Koli (Insecta: Ephemerida = Ephemeroptera) [New mayflies from the Upper Mesozoic Transbaikalian locality Chernovskie Kopi (Insecta: Ephemerida = Ephemeroptera)]. Paleontol. J. 34: 63–69.

    Google Scholar 

  171. Sinitza S.M. 1995. Chernovskiĭ paleontologocheskiĭ zapovednik [Chernovskii Paleontological Reserve]. Vest. Khiin. Politech. Univ. [Jubilee. Ed. Bull. Chita Polytech. Inst. Mosk. Gos. Univ.] 1: 70–84.

    Google Scholar 

  172. Šmídová L. & Lei X. 2017. The earliest amber-recorded type cockroach family was aposematic (Blattaria: Blattidae). Cretaceous Res. 72: 189–199. https://doi.org/10.1016/j.cretres.2017.01.008

    Article  Google Scholar 

  173. Solórzano Kraemer M.M. 2007. Systematic, palaeoecology, and palaeobiogeography of the insect fauna from Mexican amber. Palaeontographica A 282 (1–6): 1–133. https://doi.org/10.1127/pala/282/2007/1

    Google Scholar 

  174. Sosov R.F 1955. Theoretical significance of mutation of microorganisms; consideration on publication of S.N. Muromtsev’s book, Variability of microorganisms in the problem of immunity, 1953. Zh. Mikrobiol. Epidemiol. Immunobiol. 12: 3–8. PMID: 13300910

    Google Scholar 

  175. Stindl R. 2014. The telomeric sync model of speciation: specieswide telomere erosion triggers cycles of transposon-mediated genomic rearrangements, which underlie the salutatory appearance of nonadaptive characters. Naturwissenschaften 101: 163–186. https://doi.org/10.1007/s00114-014-1152-8

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  176. Sukatsheva I.D. & Vassilenko D.V. 2011. Caddisflies from Chernovskie Kopi (Jurassic/Cretaceous of Transbaikalia). Zoosymposia 5: 434–438.

    Google Scholar 

  177. Svensmark H. 1998. Influence of Cosmic Rays on Earth’s Climate. Phys. Rev. Lett. 81 (22): 5027–5030. https://doi.org/10.1103/Phys-RevLett.81.5027

    CAS  Article  Google Scholar 

  178. Taberlet P., Zimmermann N.E., Englisch T., Tribsch A., Holderegger R., Alvarez N., Niklfeld H., Coldea G., Mirek Z., Moilanen A., Ahlmer W., Marsan P.A., Bona E., Bovio M., Choler P., Cieślak E., Colli L., Cristea V., Dalmas J.P., Frajman B., Garraud L., Gaudeul M., Gielly L., Gutermann W., Jogan N., Kagalo A.A., Korbecka G., Küpfer P., Lequette B., Letz D.R., Manel S., Mansion G., Marhold K., Martini F., Negrini R., Nińo F., Paun O., Pellecchia M., Perico G., Piękoś-Mirkowa H., Prosser F., Puşcaş M., Ronikier M., Scheuerer M., Schneeweiss G.M., Schönswetter P., Schratt-Ehrendorfer L., Schüpfer F., Selvaggi A., Steinmann K., Thiel-Egenter C., van Loo M., Winkler M., Wohlgemuth T., Wraber T., Gugerli F., IntraBioDiv Consortium & Vellend M. 2012. Genetic diversity in widespread species is not congruent with species richness in alpine plant communities. Ecol. Lett. 15 (12): 1439–1448. https://doi.org/10.1111/ele.12004.

    PubMed  Article  PubMed Central  Google Scholar 

  179. Tolley K.A., Tilbury C.R., Measey G.J., Menegon M., Branch W.R. & Matthee C.A. 2011. Ancient forest fragmentation or recent radiation? Testing refugial speciation models in chameleons within an African biodiversity hotspot. J. Biogeogr. 38 (9): 1748–1760. https://doi.org/10.1111/j.1365-2699.2011.02529.x

    Article  Google Scholar 

  180. Townsend T. & Larson A. 2006. Molecular phylogenetics and mitochondrial genomic evolution in the Chamaeleonidae (Reptilia, Squamata). Molec. Phylogenet. Evol. 23 (1): 22–36. https://doi.org/10.1006/mpev.2001.1076

    Article  Google Scholar 

  181. Trujillo C.A. & Sheppard S.S. 2014. A Sedna-like body with a perihelion of 80 astronomical units. Nature 507: 471–474. https://doi.org/10.1038/nature13156

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  182. Vassilenko D.V. 2005a. Damages on mesozoic plants from the Transbaikalian locality Chernovskie Kopi. Paleontol. J. 39 (6): 54–59.

    Google Scholar 

  183. Vassilenko D.V. 2005b. New damselflies (Odonata: Synlestidae, Hemiphlebiidae) from Mesozoic Transbaikalian locality of Chernovskie Kopi. Paleontol. J. 39 (3): 55–58.

    Google Scholar 

  184. Vd’ačný P., Rajter Ľ., Shazib S.U.A., Jang S.W. & Shin M.K. 2017. Diversification dynamics of rhynchostomatian ciliates: the impact of seven intrinsic traits on speciation and extinction in a microbial group. Scientific Reports 7. https://doi.org/10.1038/s41598-017-09472-y

  185. Vidal N., Rage J.C., Couloux A. & Hedges S.B. 2009. Snakes (Serpentes), pp. 390–397. In: Hedges S.B. & Kumar S. (eds), The Timetree of Life, Oxford University Press, New York, 572 pp. ISBN: 9780199535033

    Google Scholar 

  186. Vidlička L., Vršanský P., Kúdelová T., Kúdela M., Deharveng L. & Hain M. 2017. New genus and species of cavernicolous cockroach (Blattaria, Nocticolidae) from Vietnam. Zootaxa 4232 (3): 361–375. https://doi.org/10.11646/zootaxa.4232.3.5

    Article  Google Scholar 

  187. Vishnyakova V.N. 1964. Dopolnitel’nye znaki krovenosnykh sosudov na perednikh kryl’yakh novykh tarakanov verchneĭ yury [Additional characters of wing venation in forewings of a new Upper Jurassic cockroach]. Paleontol. J. 1964 (1): 82–87.

    Google Scholar 

  188. Vishnyakova V.N. 1968. Mezozoĭskie tarakany s naruzhnym yaĭtseladom i osobennosti ikh razmnozhniya (Blattodea) [Mesozoic cockroaches with external ovipositor and peculiarities of their reproduction], pp. 55–86. In: Rohdendorf B.B. (ed.), Yurskie nasekomye Karatau [Jurassic Insects of Karatau], Nauka, Moscow, 252 pp.

    Google Scholar 

  189. Vishnyakova V.N. 1973. Novye tarakany (Insecta: Blattodea) iz verkhneyurskikh otlozheniĭ khrebta Karatau [New cockroaches (Insecta: Blattodea) from the Upper Jurassic of Karatau mountains]. Doklady na 24. Jezhegodnom chtenii pamyati N.A. Kholodkowskogo, pp. 64–77.

    Google Scholar 

  190. Vishnyakova V.N. 1998. Tarakany (Insecta, Blattodea) iz triasovogo mestonakhozhdeniya Madygen, Srednyaya Aziya [Cockroaches (Insecta, Blattodea) from the Triassic of the Madygen, Central Asia], Paleontol. Zh. 5: 69–76.

    Google Scholar 

  191. Visscher H., Looy C.V., Collinson M.E., Brinkhuis H., van Konijnenburg-van Cittert J.H.A., Kürschner W.M. & Sephton M.A. 2004. Environmental mutagenesis during the end-Permian ecological crisis. Proc. Natl. Acad. Sci. USA 101 (35): 12952–12956. https://doi.org/10.1073/pnas.0404472101

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  192. Vršanský P. 1997. Piniblattella gen. nov. - the most ancient genus of the family Blattellidae (Blattodea) from the Lower Cretaceous of Siberia. Entomol. Probl. 28 (1): 67–79.

    Google Scholar 

  193. Vršanský P. 1999. The Blattaria Fauna of the Lower Cretaceous of Baissa in Transbaikalian Siberia. Diploma Thesis, Comenius University, Bratislava.

    Google Scholar 

  194. Vršanský P. 2000. Decreasing variability — from the Carboniferous to the Present! (Validated on Independent Lineages of Blattaria). Paleontol. J. 34 (Suppl. 3): 374–379.

    Google Scholar 

  195. Vršanský P. 2002. Origin and the Early Evolution of Mantises. Amba Projekty 6: 1–16.

    Google Scholar 

  196. Vršanský P. 2003a. Unique assemblage of Dictyoptera (Insecta-Blattaria, Mantodea, Isoptera, Mantodea) from the Lower Cretaceous of Bon Tsagaan Nuur in Mongolia. Entomol. Probl. 33 (1-2): 119–151.

    Google Scholar 

  197. Vršanský P. 2003b. Umenocoleoidea - an amazing lineage of aberrant insects (Insecta, Blattaria). Amba Projekty 7 (1): 1–32.

    Google Scholar 

  198. Vršanský P. 2004. Transitional Jurassic/Cretaceous cockroach massemblage (Insecta, Blattaria) from the Shar-Teg in Mongolia. Geol. Carpath. 55 (6): 457–468.

    Google Scholar 

  199. Vršanský P. 2005. Mass mutations of insects at the Jurassic/Cretaceous boundary? Geol. Carpath. 56 (6): 473–781.

    Google Scholar 

  200. Vršanský P. 2008. New blattarians and a review of dictyopteran assemblages from the Lower Cretaceous of Mongolia. Acta Palaeontol. Pol. 53 (1): 129–136. https://doi.org/10.4202/app.2008.0109

    Article  Google Scholar 

  201. Vršanský P. 2009. Albian cockroaches (Insecta, Blattida) from French amber of Archingeay. Geodiversitas 31 (1): 73–98. https://doi.org/10.5252/g2009n1a7

    Article  Google Scholar 

  202. Vršanský P. 2010. Cockroach as the earliest eusocial animal. Acta. Geol. Sin. - Engl. Ed. 84 (4): 793–808. https://doi.org/10.1111/j.1755-6724.2010.00261.x

    Article  Google Scholar 

  203. Vršanský P. & Ansorge J. 2007. Lower Jurassic cockroaches (Insecta: Blattaria) from Germany and England. Afr. Invertebr. 48 (1): 103–126.

    Google Scholar 

  204. Vršanský P. & Aristov D. 2012. Enigmatic Late Permian cockroaches from Isady, Russia (Blattida: Mutoviidae fam. n.). Zootaxa 3247: 19–31. https://doi.org/10.5281/zenodo.213150

    Article  Google Scholar 

  205. Vršanský P. & Aristov D. 2014. Termites from the Jurassic/Cretaceous boundary; evidence for the longevity of their earliest genera. Eur. J. Entomol. 111 (1): 137–141. https://doi.org/10.14411/eje.2014.014

    Article  Google Scholar 

  206. Vršanský P. & Bechly G.N. 2015. New predatory cockroaches (Insecta: Blattaria: Manipulatoridae fam.n.) from the Upper Cretaceous Myanmar amber. Geol. Carpath. 66 (2): 133–138. https://doi.org/10.1515/geoca-2015-0015

    Article  Google Scholar 

  207. Vršanský P., Cifuentes-Ruiz P., Vidlička L., Ciampor F. Jr. & Vega F.J. 2011. Afro-Asian cockroach from Chiapas amber and the lost Tertiary American entomofauna. Geol. Carpath. 62 (5): 463–475. https://doi.org/10.2478/v10096-011-0033-8

    Article  Google Scholar 

  208. Vršanský P., Liang J.-H. & Ren D. 2009. Advanced morphology and behaviour of extinct earwig-like cockroaches (Blattida: Fuziidae). Geol. Carpath. 60 (6): 449–462. https://doi.org/10.2478/v10096-009-0033-0

    Article  Google Scholar 

  209. Vršanský P., Liang J.-H. & Ren D. 2012. Malformed cockroach (Insecta: Blattida: Liberiblattinidae) from the Middle Jurassic of Daohugou in Inner Mongolia, China. Orient. Insects 46 (1): 12–18. https://doi.org/10.1080/00305316.2012.675482

    Article  Google Scholar 

  210. Vršanský P. & Makhoul E. 2013. Mieroblattina pacis gen. et sp. n. — Upper Cretaceous cockroach (Blattida: Mesoblattinidae) from Nammoura limestone of Lebanon, pp. 167–172. In: Azar D., Engel M., Jarzembowski E., Krogmann L., Nel A. & Santiago-Blay J. (eds), Insect Evolution in an Ambiferous and Stone Alphabet, Proceedings of the 6th International Congress on Fossil Insects, Arthropods and Amber, Brill, Leiden, 210 pp. ISBN13: 9789004210707

    Google Scholar 

  211. Vršanský P., Oružinský R., Barna P., Vidlička L. & Labandeira C. 2014. Native Ectobius (Blattaria: Ectobiidae) from the Early Eocene Green River formation of Colorado and its reintroduction to North America 49 million years later. Ann. Am. Entomol. Soc. 107 (1): 28–36. https://doi.org/10.1603/AN13042

    Article  Google Scholar 

  212. Vršanský P.V., Šmídová L., Valaška D., Barna P., Vidlička L., Takáč P., Pavlik L., Kúdelová T., Karim T.S., Zelagin D. & Smith D. 2016. Origin of origami cockroach reveals long-lasting (11 Ma) phenotype instability following viviparity. Sci. Nat. 103 (9–10): 78. https://doi.org/10.1007/s00114-016-1398-4

    Article  CAS  Google Scholar 

  213. Vršanský P., Vidlička L’., Barna P., Bugdaeva Z. & Markevich V. 2013. Paleocene origin of the cockroach families Blaberidae and Corydiidae: Evidence from Amur River region of Russia. Zootaxa 3635 (2): 117–126. https://doi.org/10.11646/zootaxa.3625.2.2

    PubMed  Article  PubMed Central  Google Scholar 

  214. Vršanský P., Vidlička L., Čiampor F. Jr. & Marsh F. 2012. Derived, still living cockroach genus Cariblattoides (Blattida: Blattellidae) from the Eocene sediments of Green River in Colorado, USA. Insect Sci. 19 (2): 143–152. https://doi.org/10.1111/j.1744-7917.2010.01390.x

    Article  Google Scholar 

  215. Waddington C.H. 1942. Canalization of development and the inheritance of acquired characters. Nature 150: 563–565. https://doi.org/10.1038/150563a0

    Article  Google Scholar 

  216. Waddington C.H. 1959. Canalization of development and genetic assimilation of acquired characters. Nature 183: 1654–1655. https://doi.org/10.1038/1831654a0

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  217. Wang C.C., Wang Z.Q. & Che Y.L. 2016. Protagonista lugubris, a cockroach species new to China and its contribution to the revision of genus Protagonista, with notes on the taxonomy of Archiblattinae (Blattodea, Blattidae). ZooKeys 574: 57–73. https://doi.org/10.3897/zookeys.574.7111

    Article  Google Scholar 

  218. Wang C.D. 2013. Nuurcala obesa sp. n. (Blattida, Caloblattinidae) from the Lower Cretaceous Yixian Formation in Liaoning Province, China. Zookeys 318: 35–46. https://doi.org/10.3897/zookeys.318.5514

    Article  Google Scholar 

  219. Wang T.-T., Liang J.-H. & Ren D. 2007a. Variability of Habroblattula drepanoides gen. et. sp. nov. (Insecta: Blattaria: Blattulidae) from the Yixian Formation in Liaoning, China. Zootaxa 1443: 17–27. https://doi.org/10.5281/zenodo.176061

    Article  Google Scholar 

  220. Wang T.-T., Liang J.-H., Ren D. & Shi C. 2007b. New Mesozoic cockroaches (Blattaria: Blattulidae) from Jehol Biota of western Liaoning in China. Ann. Zool. 57 (3): 483–495.

    Google Scholar 

  221. Wang X., Shi Y., Wang Z. & Che Y. 2014a. Revision of the genus Salganea Stål (Blattodea, Blaberidae, Panesthiinae) from China, with descriptions of three new species. ZooKeys 412: 59–87. https://doi.org/10.3897/zookeys.412.7134

    Article  Google Scholar 

  222. Wang X.D., Wang Z.G. & Che Y.L. 2014b. A taxonomic study of the genus Panesthia (Blattodea, Blaberidae, Panesthiinae) from China with descriptions of one new species, one new subspecies and the male of Panesthia antennata. ZooKeys 466: 53–75. https://doi.org/10.3897/zookeys.466.8111

    Article  Google Scholar 

  223. Wang Y., Ren D. & Shih C. 2007c. New discovery of Palaeontinid fossils from the Middle Jurassic in Daohugou, Inner Mongolia (Homoptera, Palaeontinidae). Science in China Series D: Earth Sciences 50 (4): 481–486 https://doi.org/10.1007/s11430-007-0029-5

    CAS  Article  Google Scholar 

  224. Wang Z.Q. & Che Y.L. 2013. Three new species of cockroach genus Symploce Hebard, 1916 (Blattodea, Ectobiidae, Blattellinae) with redescriptions of two known species based on types from Mainland China. ZooKeys 337: 1–18. https://doi.org/10.3897/zookeys.337.5770

    Article  Google Scholar 

  225. Webster M. 2007. A Cambrian peak in morphological variation within trilobite species. Science 317: 499–502. https://doi.org/10.1126/science.1142964

    CAS  Article  Google Scholar 

  226. Wei T.T. & Ren D. 2013. Completely preserved cockroaches of the family Mesoblattinidae from J/K Yixian Formation, China. Geol. Carpath. 64 (4): 291–304. https://doi.org/10.2478/geoca-2013-0021

    Article  Google Scholar 

  227. Weissert H. & Mohr H. 1996. Late Jurassic climate and its impact on carbon cycling. Palaeogeogr. Palaeoclimatol. Palaeoecol. 122 (1–4): 27–43. https://doi.org/10.1016/0031-0182(95)00088-7

    Article  Google Scholar 

  228. Weterings E. & Chen D.J. 2008. The endless tale of nonhomologous end-joining. Cell Res. 18 (1): 114–124. https://doi.org/10.1038/cr.2008.3

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  229. Willis K.J., Bennett K.D. & Birks H.J.B. 2009. Variability in thermal and UV-B energy fluxes through time and their influence on plant diversity and speciation. J. Biogeogr. 36 (9): 1630–1644. https://doi.org/10.1111/j.1365-2699.2009.02102.x

    Article  Google Scholar 

  230. Winterton S.L. 2006. Aberrant wing venation in the green lacewing Apochrysa lutea (Walker) (Neuroptera: Chrysopidae: Apochrysinae). Austral. Entomol. 33 (3): 143–146.

    Google Scholar 

  231. Yang W. & Li S.G. 2008. Geochronology and geochemistry of the Mesozoic volcanic rocks in Western Liaoning: Implications for lithospheric thinning of the North China Craton. Lithos 102 (1–2): 88–117. https://doi.org/10.1016/j.lithos.2007.09.018

    CAS  Article  Google Scholar 

  232. Yang W., Li S.G. & Jiang B.Y. 2007. New evidence for Cretaceous age of the feathered dinosaurs of Liaoning: zircon U-PbSHRIMP dating of the Yixian Formation in Sihetun, northeast China. Cretaceous Res. 28 (2): 177–182. https://doi.org/10.1016/j.cretres.2006.05.011

    Article  Google Scholar 

  233. Zhang Z., Schneider J.W. & Hong Y. 2013. The most ancient roach (Blattodea): a new genus and species from the earliest Late Carboniferous (Namurian) of China, with a discussion of the phylomorphogeny of early blattids. J. Syst. Paleontol. 11 (1): 27–40. https://doi.org/10.1080/14772019.2011.634443

    Article  Google Scholar 

  234. Zherikhin V.V. 1987. Biocoenotic regulation and evolution. Paleontol. J. 21 (1): 12–19.

    Google Scholar 

  235. Zherikhin V.V., Mostovski M.B., Vrsansky P., Blagoderov V.A. & Lukashevich E.D. 1999. The unique Lower Cretaceous locality Baissa and other contemporaneous fossil insect sites in North and West Transbaikalia, pp. 185–192. In: Vršanský P (ed.), Proc 1st Palaeoentomol Conf, Moscow 1998, Amba projekty, Bratislava.

  236. Żyła D., Wegierek P., Owocki K. & Niedźwiedzki G. 2013. Insects and crustaceans from the latest Early-early Middle Triassic of Poland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 371: 136–144. https://doi.org/10.1016/j.palaeo.2013.01.002

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Peter Vršanský.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vršanský, P., OruŘinský, R., Aristov, D. et al. Temporary deleterious mass mutations relate to originations of cockroach families. Biologia 72, 886–912 (2017). https://doi.org/10.1515/biolog-2017-0096

Download citation

Key words

  • evolution
  • diversification
  • mass mutations
  • fossil insects
  • cockroaches
  • Nemesis