Skip to main content
Log in

Direct interaction between troponin and myosin enhances the ATPase activity of heavy meromyosin

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Contractility of the heart muscle is a result of sliding movements between thick and thin filaments, produced by interactions between actin and myosin during the cross-bridge cycle. Activation of the myofilament is triggered by Ca2+ binding to cardiac troponin C and is regulated through an “on/off” switching process occurring in the thin filament. Beside Ca2+ regulation, strongly bound cross-bridges exert a positive feedback on myofilament regulation. Despite the importance of this positive feedback mechanism, its full molecular basis has so far remained elusive. Ca2+-regulated interactions between thick and thin filaments are widely regarded as an allosteric system, which means that multiple protein-protein interactions at their interface may exert alternative feedback effects on myofilament activation. To advance knowledge about these regulatory feedback mechanisms, we investigated a previously unstudied, hypothetical interaction between cardiac troponin and myosin, and how this interaction affects the function of myosin. Our results strongly suggest that myosin does indeed interact with the N-terminus of cardiac troponin I and the C-terminus of cardiac troponin T, suggesting a possible direct interaction between myosin and the IT-arm of troponin. We also conducted an in vitro heavy meromyosin (HMM) ATPase assay, and found that troponin significantly enhanced the actin-activated ATPase activity of HMM, both in the absence of tropomyosin and at the activated state of thin filament.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

cTnC:

cardiac troponin C

cTnI:

cardiac troponin I

cTnT:

cardiac troponin T

DTT:

dithiothreitol

EGTA:

ethylene glycol-bis(β-aminoethyl ether)-N,N,N’,N’-tetraacetic acid

HMM:

heavy meromyosin

IVM:

in vitro motility assay

MOPS:

3-(N-morpholino)propanesulfonic acid

N-cTnC:

N-terminus of cardiac troponin C

Pi:

inorganic phosphate

SL:

sarcomere length

TBS/T:

Tris-buffered saline solution containing 1% tween-20

TF:

thin filament

Tm:

tropomyosin

Tn:

troponin

References

  • Allen D.G. & Kentish J.C. 1985. The cellular basis of the lengthtension relation in cardiac muscle. J. Mol. Cell Cardiol. 17: 821–840.

    Article  CAS  Google Scholar 

  • Bernt W., Polosukhina K., Weiner B., Tscharnuter W. & Highsmith S. 2002. Active site control of myosin cross-bridge zeta potential. Biochemistry 41: 11308–11314.

    Article  CAS  Google Scholar 

  • Chandra M., Rundell V.L., Tardiff J.C., Leinwand L.A., De Tombe P.P. & Solaro R.J. 2001. Ca2+ activation of myofilaments from transgenic mouse hearts expressing R92Q mutant cardiac troponin T. Am. J. Physiol. Heart Circ. Physiol. 280: H705–H713.

    Article  CAS  Google Scholar 

  • Dong W.J., Chandra M., Xing J., Solaro R.J. & Cheung H.C. 1997. Conformation of the N-terminal segment of a monocysteine mutant of troponin I from cardiac muscle. Biochemistry 36: 6745–6753.

    Article  CAS  Google Scholar 

  • Dong W.J., Jayasundar J.J., An J., Xing J. & Cheung H.C. 2007. Effects of PKA phosphorylation of cardiac troponin I and strong crossbridge on conformational transitions of the Ndomain of cardiac troponin C in regulated thin filaments. Biochemistry 46: 9752–9761.

    Article  CAS  Google Scholar 

  • Dong W.J., Xing J., Robinson J.M. & Cheung H.C. 2001. Ca2+ induces an extended conformation of the inhibitory region of troponin I in cardiac muscle troponin. J. Mol. Biol. 314: 51–61.

    Article  CAS  Google Scholar 

  • Dong W.J., Xing J., Villain M., Hellinger M., Robinson J.M., Chandra M., Solaro R.J., Umeda P.K. & Cheung H.C. 1999. Conformation of the regulatory domain of cardiac muscle troponin C in its complex with cardiac troponin I. J. Biol. Chem. 274: 31382–31390.

    Article  CAS  Google Scholar 

  • Ebashi S., Endo M. & Otsuki I. 1969. Control of muscle contraction. Q. Rev. Biophys. 2: 351–384.

    Article  CAS  Google Scholar 

  • Farah C.S. & Reinach F.C. 1995. The troponin complex and regulation of muscle contraction. FASEB J. 9: 755–767.

    Article  CAS  Google Scholar 

  • Geeves M.A. & Lehrer S.S. 2002. Cooperativity in the Ca2+ regulation of muscle contraction. Results Probl. Cell Differ. 36: 111–132.

    Article  CAS  Google Scholar 

  • Gordon A.M., Homsher E. & Regnier M. 2000. Regulation of contraction in striated muscle. Physiol. Rev. 80: 853–924.

    Article  CAS  Google Scholar 

  • Katrukha I.A. 2013. Human cardiac troponin complex. Structure and functions. Biochemistry (Mosc) 78: 1447–1465.

    Article  CAS  Google Scholar 

  • Kiani F.A. & Fischer S. 2014. Catalytic strategy used by the myosin motor to hydrolyze ATP. Proc. Natl. Acad. Sci. USA 111: E2947–E2956.

    Article  CAS  Google Scholar 

  • Kobayashi T., Kobayashi M., Gryczynski Z., Lakowicz J.R. & Collins J.H. 2000. Inhibitory region of troponin I: Ca2+-dependent structural and environmental changes in the troponin-tropomyosin complex and in reconstituted thin filaments. Biochemistry 39: 86–91.

    Article  CAS  Google Scholar 

  • Kobayashi T. & Solaro R.J. 2005. Calcium, thin filaments, and the integrative biology of cardiac contractility. Annu. Rev. Physiol. 67: 39–67.

    Article  CAS  Google Scholar 

  • Malinchik S., Xu S. & Yu L.C. 1997. Temperature-induced structural changes in the myosin thick filament of skinned rabbit psoas muscle. Biophys. J. 73: 2304–2312.

    Article  CAS  Google Scholar 

  • Margossian S.S. & Lowey S. 1982. Preparation of myosin and its subfragments from rabbit skeletal muscle. Methods Enzymol. 85: 55–71.

    Article  CAS  Google Scholar 

  • McKillop D.F. & Geeves M.A. 1993. Regulation of the interaction between actin and myosin subfragment 1: evidence for three states of the thin filament. Biophys. J. 65: 693–701.

    Article  CAS  Google Scholar 

  • Pardee J.D. & Spudich J.A. 1982. Purificatin of muscle actin. Methods Enzymol. 85: 164–181.

    Article  CAS  Google Scholar 

  • Patel D.A. & Root D.D. 2009. Close proximity of myosin loop 3 to troponin determined by triangulation of resonance energy transfer distance measurements. Biochemistry 48: 357–369.

    Article  CAS  Google Scholar 

  • Perz-Edwards R.J., Irving T.C., Baumann B.A., Gore D., Hutchinson D.C., Krzic U., Porter R.L., Ward A.B. & Reedy M.K. 2011. X-ray diffraction evidence for myosin-troponin connections and tropomyosin movement during stretch activation of insect flight muscle. Proc. Natl. Acad. Sci. USA 108: 120–125.

    Article  CAS  Google Scholar 

  • Robinson J.M., Dong W.J., Xing J. & Cheung H.C. 2004. Switching of troponin I: Ca2+ and myosin-induced activation of heart muscle. J. Mol. Biol. 340: 295–305.

    Article  CAS  Google Scholar 

  • Schoffstall B., LaBarbera V.A., Brunet N.M., Gavino B.J., Herring L., Heshmati S., Kraft B.H., Inchausti V., Meyer N.L., Moonoo D., Takeda A.K. & Chase P.B. 2011. Interaction between troponin and myosin enhances contractile activity of myosin in cardiac muscle. DNA Cell Biol. 30: 653–659.

    Article  CAS  Google Scholar 

  • Smillie L.B. 1982. Preperation and identification of α-and β-tropomyosins. Methods Enzymol. 85: 234–241.

    Article  CAS  Google Scholar 

  • Steiger G.J. 1971. Stretch activation and myogenic oscillation of isolated contractile structures of heart muscle. Pflugers Arch. 330: 347–361.

    Article  CAS  Google Scholar 

  • Sumandea M.P., Pyle W.G., Kobayashi T., de Tombe P.P. & Solaro R.J. 2003. Identification of a functionally critical protein kinase C phosphorylation residue of cardiac troponin T. J. Biol. Chem. 278: 35135–35144.

    Article  CAS  Google Scholar 

  • Sweeney H.L. & Houdusse A. 2010. Structural and functional insights into the myosin motor mechanism. Annu. Rev. Biophys. 39: 539–557.

    Article  CAS  Google Scholar 

  • Szent-Györgyi A.G. 1975. Calcium regulation of muscle contraction. Biophys. J. 15: 707–723.

    Article  Google Scholar 

  • Takeda S., Yamashita A., Maeda K. & Maeda Y. 2003. Structure of the core domain of human cardiac troponin in the Ca2+- saturated form. Nature 424: 35–41.

    Article  CAS  Google Scholar 

  • Tobacman L.S. 1996. Thin filament-mediated regulation of cardiac contraction. Annu. Rev. Physiol. 58: 447–481.

    Article  CAS  Google Scholar 

  • Vemuri R., Lankford E.B., Poetter K., Hassanzadeh S., Takeda K., Yu Z.X., Ferrans V.J. & Epstein N.D. 1999. The stretchactivation response may be critical to the proper functioning of the mammalian heart. Proc. Natl. Acad. Sci. USA 96: 1048–1053.

    Article  CAS  Google Scholar 

  • Weeds A.G. & Lowey S. 1971. Substructure of the myosin molecule. J. Mol. Biol. 61: 701–725.

    Article  CAS  Google Scholar 

  • Xing J. & Cheung H.C. 1994. Vanadate-induced changes in myosin subfragment-1 from cardiac muscle. Arch. Biochem. Biophys. 313: 229–234.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Ji Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghashghaee, N.B., Li, KL. & Dong, WJ. Direct interaction between troponin and myosin enhances the ATPase activity of heavy meromyosin. Biologia 72, 702–708 (2017). https://doi.org/10.1515/biolog-2017-0079

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2017-0079

Key words

Navigation