Skip to main content
Log in

Why we age — a new evolutionary view

  • Hypothesis
  • Section Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

This article introduces a new evolutionary theory of aging, which suggests that aging is the result of imperfections in cell turnover in organisms. Some of the simplest animals demonstrate the strongest ability of cell renewal and therefore, according to this theory, their aging often seems to be negligible. Evolutionarily related organisms (e.g. mammals) share similar abilities in tissue cell turnover but they differ in the rates at which the process is performed. These rate differences are more or less forced by the speed of irreversible damage (e.g. lipofuscin) increase in their cells. This speed is the result of an evolutionary trade-off of “function vs. resistance to irreversible damage” in their cell molecules. The article also offers an explanation of the differences in basal metabolic rate between different species. Put simply, while a trade-off in irreversible damage plays a role in aging, the trade-off in reversible damage plays a role in basal metabolic rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

BM:

body mass

BMR:

basal metabolic rate

CR:

calorie restriction

DMD:

Duchenne muscular dystrophy

GH:

growth hormone

Gpxl:

glutathione peroxidase 1

IGF-1:

insulin-like growth factor-1

MLS:

maximum lifespan

MOSTA:

mitochondrial oxidative stress theory of aging

PUFAs:

polyunsaturated fatty acids

ROS:

reactive oxygen species

Sodl:

superoxide dismutase 1

SSA:

senile systemic amyloidosis

TTR:

transthyretin.

References

  • Ahmed A.S.I., Sheng M.H., Wasnik S., Baylink D.J. & Lau K.H.W. 2017. Effect of aging on stem cells. World J. Exp. Med. 7: 1–10.

    Article  PubMed  PubMed Central  Google Scholar 

  • Aledo J.C, Li Y., De Magalhäes J.P., Ruíz-Camacho M. & Pérez-Claros J.A. 2011. Mitochondrially encoded methionine is inversely related to longevity in mammals. Aging Cell 10: 198–207.

    Article  CAS  PubMed  Google Scholar 

  • Andziak B., O’Connor T.P. & Buffenstein R. 2005. Antioxidants do not explain the disparate longevity between mice and the longest-living rodent, the naked mole-rat. Mech. Ageing Dev. 126: 1206–1212.

    Article  CAS  PubMed  Google Scholar 

  • Beausejour C.M. & Campisi J. 2006. Ageing: balancing regeneration and cancer. Nature 443: 404–405.

    Article  CAS  PubMed  Google Scholar 

  • Bermejo-Pareja F., Benito-León J., Vega S., Medrano M.J., Román G.C. & Neurological Disorders in Central Spain (NEDICES) Study Group. 2008. Incidence and subtypes of dementia in three elderly populations of central Spain. J. Neurol. Sci. 264: 63–72.

    Article  CAS  PubMed  Google Scholar 

  • Bernerd F. & Asselineau D. 1998. UVA exposure of human skin reconstructed in vitro induces apoptosis of dermal fibroblasts: subsequent connective tissue repair and implications in pho-toaging. Cell Death Differ. 5: 792–802.

    Article  CAS  PubMed  Google Scholar 

  • Bjelakovic G., Nikolova D. & Gluud C. 2014. Antioxidant supplements and mortality. Curr. Opin. Clin. Nutr. Metab. Care 17: 40–44.

    CAS  PubMed  Google Scholar 

  • Boettcher M., Machann J., Stefan N., Thamer C., Haring H.U., Claussen C.D., Fritsche A. & Schick F. 2009. Intermuscular adipose tissue (IMAT): association with other adipose tissue compartments and insulin sensitivity. J. Magn. Reson. Imaging 29: 1340–1345.

    Article  PubMed  Google Scholar 

  • Boldrin L., Zammit P.S. & Morgan J.E. 2015. Satellite cells from dystrophic muscle retain regenerative capacity. Stem Cell Res. 14: 20–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brizzee K.R. & Johnson F.A. 1970. Depth distribution of lipo-fuscin pigment in cerebral cortex of albino rat. Acta Neu-ropathol. 16: 205–219.

    Article  CAS  Google Scholar 

  • Brown G.C. & Borutaite V. 2012. There is no evidence that mitochondria are the main source of reactive oxygen species in mammalian cells. Mitochondrion 12: 1–4.

    Article  CAS  PubMed  Google Scholar 

  • Brunauer R. & Kennedy B.K. 2015. Progeria accelerates adult stem cell aging. Science 348: 1093–1094.

    Article  CAS  PubMed  Google Scholar 

  • Buffenstein R. & Edrey Y.H. 2009. Slow aging: insights from an exceptionally long-lived rodent, the naked mole-rat, pp. 141–156. In: Sell C., Lorenzini A. & Brown-Borg H.M. (eds), Life-Span Extension: Single-Cell Organisms to Man. Humana Press, NY, USA.

  • Cabreiro F., Ackerman D., Doonan R., Araiz C., Back P., Papp D., Braeckman B.P. & Gems D. 2011. Increased life span from overexpression of superoxide dismutase in Caenorhab-ditis elegans is not caused by decreased oxidative damage. Free Radic. Biol. Med. 51: 1575–1582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cameron H.A. & Dayer A.G. 2008. New interneurons in the adult neocortex: small, sparse, but significant? Biol. Psychiatry 63: 650–655.

    Article  PubMed  Google Scholar 

  • Chowdhury P.K., Haider M., Choudhury P.K., Kraus G.A., De-sai M.J., Armstrong D.W., Casey T.A., Rasmussen M.A. & Petrich J.W. 2004. Generation of fluorescent adducts of mal-ondialdehyde and amino acids: toward an understanding of lipofuscin. Photochem. Photobiol. 79: 21–25.

    Article  CAS  PubMed  Google Scholar 

  • Coclet J., Foureau F., Ketelbant P., Galand P. & Dumont J.E. 1989. Cell population kinetics in dog and human adult thyroid. Clin. Endocrinol. 31: 655–666.

    Article  CAS  Google Scholar 

  • Coffman J.A., Rieger S., Rogers A.N., Updike D.L. & Yin V.P. 2016. Comparative biology of tissue repair, regeneration and aging, npj Regener. Med. 1: 16003.

    Google Scholar 

  • Colman R.J., Beasley T.M., Kemnitz J.W., Johnson S.C., Wein-druch R. & Anderson R.M. 2014. Caloric restriction reduces age-related and all-cause mortality in rhesus monkeys. Nat. Commun. 5: 3557.

    Article  CAS  PubMed  Google Scholar 

  • Conti B., Sanchez-Alavez M., Winsky-Sommerer R., Morale M.C., Lucero J., Brownell S., Fabre V., Huitron-Resendiz S., Henriksen S., Zorrilla E.P., de Lecea L. & Bartfai T. 2006. Transgenic mice with a reduced core body temperature have an increased life span. Science 314: 825–828.

    Article  CAS  PubMed  Google Scholar 

  • Coschigano K.T., Clemmons D., Bellush L.L. & Kopchick J.J. 2000. Assessment of growth parameters and life span of GHR/BP gene-disrupted mice. Endocrinology 141: 2608–2613.

    Article  CAS  PubMed  Google Scholar 

  • David C.N. 2012. Interstitial stem cells in Hydra: multipotency and decision-making. Int. J. Dev. Biol. 56: 489–497.

    Article  PubMed  Google Scholar 

  • Dayer A.G., Cleaver K.M., Abouantoun T. & Cameron H.A. 2005. New GABAergic interneurons in the adult neocortex and striatum are generated from different precursors. J. Cell Biol. 168: 415–427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Boer J., Andressoo J.O., de Wit J., Huijmans J., Beems R.B., van Steeg H., Weeda G., van der Horst G.T., van Leeuwen W., Themmen A.P., Meradji M. & Hoeijmakers J.H. 2002. Premature aging in mice deficient in DNA repair and transcription. Science 296: 1276–1279.

    Article  PubMed  Google Scholar 

  • De Magalhäes J.P., Costa J. & Church G.M. 2007. An analysis of the relationship between metabolism, developmental schedules, and longevity using phylogenetic independent contrasts. J. Gerontol. A Biol. Sci. Med. Sci. 62: 149–160.

    Article  PubMed  Google Scholar 

  • De Ruyck K., De Boevre M., Huybrechts I. & De Saeger S. 2015. Dietary mycotoxins, co-exposure, and carcinogenesis in humans: short review. Mutat. Res. Rev. Mutat. Res. 766: 32–41.

    Article  CAS  PubMed  Google Scholar 

  • den Dunnen W.F., Brouwer W.H., Bijlard E., Kamphuis J., van Linschoten K., Eggens-Meijer E. & Holstege G. 2008. No disease in the brain of a 115-year-old woman. Neurobiol. Aging 29: 1127–1132.

    Article  Google Scholar 

  • Di Carlo A., Baldereschi M., Amaducci L., Lepore V., Bracco L., Maggi S., Bonaiuto S., Perissinotto E., Scarlato G., Farchi G. & Inzitari D. 2002. Incidence of dementia, Alzheimer’s disease, and vascular dementia in Italy. The ILSA Study. J. Am. Geriatr. Soc. 50: 41–48.

    Article  PubMed  Google Scholar 

  • Dunn S.E., Kari F.W., French J., Leininger J.R., Travlos G., Wilson R. & Barrett J.C. 1997. Dietary restriction reduces insulin-like growth factor I levels, which modulates apopto-sis, cell proliferation, and tumor progression in p53-deficient mice. Cancer Res. 57: 4667–4672.

    CAS  PubMed  Google Scholar 

  • Edrey Y.H. & Salmon A.B. 2014. Revisiting an age-old question regarding oxidative stress. Free Radic. Biol. Med. 71: 368–378.

    Article  CAS  PubMed  Google Scholar 

  • Edrey Y.H., Hanes M., Pinto M., Mele J. & Buffenstein R. 2011. Successful aging and sustained good health in the naked mole rat: a long-lived mammalian model for biogerontology and biomedical research. ILAR J. 52: 41–53.

    Article  CAS  PubMed  Google Scholar 

  • Episkopou V., Maeda S., Nishiguchi S., Shimada K., Gaitanaris G.A., Gottesman M.E. & Robertson E.J. 1993. Disruption of the transthyretin gene results in mice with depressed levels of plasma retinol and thyroid hormone. Proc. Natl. Acad. Sci. USA 90: 2375–2379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Espada J., Varela I., Flores L, Ugalde A.P., Cadiňanos J., Pendás A.M., Stewart C.L, Tryggvason K., BlascoM.A., Freije J.M.P & López-Otín C. 2008. Nuclear envelope defects cause stem cell dysfunction in premature-aging mice. J. Cell Biol. 181: 27–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans W.J. & Lexell J. 1995. Human aging, muscle mass, and fiber type composition. J. Gerontol. A Biol. Sci. Med. Sci. 50: 11–16.

    Article  Google Scholar 

  • Frazier M.R., Huey R.B. & Berrigan D. 2006. Thermodynamics constrains the evolution of insect population growth rates: “warmer is better”. Am. Nat. 168: 512–520.

    Article  CAS  PubMed  Google Scholar 

  • Gallagher D., Kuznia P., Heshka S., Albu J., Heymsfield S.B., Goodpaster B., Visser M. & Harris T.B. 2005. Adipose tissue in muscle: a novel depot similar in size to visceral adipose tissue. Am. J. Clin. Nutr. 81: 903–910.

    Article  CAS  PubMed  Google Scholar 

  • Galván L, Naudí A., Erritz0e J., M0ller A.P., Barja G. & Pamplona R. 2015. Long lifespans have evolved with long and monounsaturated fatty acids in birds. Evolution 69: 2776–2784.

    Article  CAS  PubMed  Google Scholar 

  • García-Cao I., García-Cao M., Martín-Caballero J., Criado L.M., Klatt P., Flores J.M., Weill J.C., Blasco M.A. & Serrano M. 2002. ‘Super p53’ mice exhibit enhanced DNA damage response, are tumor resistant and age normally. EMBO J. 21: 6225–6235.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gavrilov L.A. & Gavrilova N.S. 2002. Evolutionary theories of aging and longevity. Sci. World J. 2: 339–356.

    Article  Google Scholar 

  • Godwin J.W. & Rosenthal N. 2014. Scar-free wound healing and regeneration in amphibians: immunological influences on regenerative success. Differentiation 87: 66–75.

    Article  CAS  PubMed  Google Scholar 

  • Gómez A., Sánchez-Roman I., Gomez J., Cruces J., Mate I., Lopez-Torres M., Naudi A., Portero-Otin M., Pamplona R., De la Fuente M. & Barja G. 2014. Lifelong treatment with atenolol decreases membrane fatty acid unsaturation and oxidative stress in heart and skeletal muscle mitochondria and improves immunity and behavior, without changing mice longevity. Aging Cell 13: 551–560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gould E., Vail N., Wagers M. & Gross C.G. 2001. Adult-generated hippocampal and neocortical neurons in macaques have a transient existence. Proc. Natl. Acad. Sci. USA 98: 10910–10917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregg S.Q., Gutiérrez V, Rasile Robinson A., Woodell T., Nakao A., Ross M.A., Michalopoulos G.K., Rigatti L., Rothermel C.E., Kamileri L, Garinis C., Stolz D.B. & Niedernhofer L.J. 2012. A mouse model of accelerated liver aging caused by a defect in DNA repair. Hepatology 55: 609–621.

    Article  CAS  PubMed  Google Scholar 

  • Grimes K.M., Lindsey M.L., Gelfond J.A. & Buffenstein R. 2012. Getting to the heart of the matter: age-related changes in diastolic heart function in the longest-lived rodent, the naked mole rat. J. Gerontol. A Biol. Sci. Med. Sci. 67: 384–394.

    Article  PubMed  Google Scholar 

  • Hasek B.E., Stewart L.K., Henagan T.M., Boudreau A., Lenard N.R., Black C., Shin J., Huypens P., Malloy V.L., Plaisance E.P., Krajcik R.A., Orentreich N. & Gettys T.W. 2010. Dietary methionine restriction enhances metabolic flexibility and increases uncoupled respiration in both fed and fasted states. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299: R728–R739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Healy K. 2015. Eusociality but not fossoriality drives longevity in small mammals. Proc. Biol. Sci. 282: 20142917.

    Article  PubMed  PubMed Central  Google Scholar 

  • Healy K., Guillerme T., Finlay S., Kane A., Kelly S.B., McClean D., Kelly D.J., Donohue I., Jackson A.L. & Cooper N. 2014. Ecology and mode-of-life explain lifespan variation in birds and mammals. Proc. R. Soc. B 281: 20140298.

    Article  PubMed  PubMed Central  Google Scholar 

  • Herranz D., Muńoz-Martin M., Cańamero M., Mulero F., Martinez-Pastor B., Fernandez-Capetillo O. & Serrano M. 2010. Sirtl improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat. Commun. 1: 3.

    Article  CAS  PubMed  Google Scholar 

  • Herrup K. 2015. The case for rejecting the amyloid cascade hypothesis. Nat. Neurosci. 18: 794–799.

    Article  CAS  PubMed  Google Scholar 

  • Hiona A., Sanz A., Kujoth G.C., Pamplona R., Seo A.Y., Hofer T., Someya S., Miyakawa T., Nakayama C., Samhan-Arias A.K., Servais S., Barger J.L., Portero-Otin M., Tanokura M., Prolla T.A. & Leeuwenburgh C. 2010. Mitochondrial DNA mutations induce mitochondrial dysfunction, apoptosis and sarcopenia in skeletal muscle of mitochondrial DNA mutator mice. PloS One 5: e11468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hulbert A.J., Kelly M.A. & Abbott S.K. 2014. Polyunsaturated fats, membrane lipids and animal longevity. J. Comp. Physiol. B 184: 149–166.

    Article  CAS  PubMed  Google Scholar 

  • Hulbert A.J., Pamplona R., Buffenstein R. & Buttemer W.A. 2007. Life and death: metabolic rate, membrane composition, and life span of animals. Physiol. Rev. 87: 1175–1213.

    Article  CAS  PubMed  Google Scholar 

  • James R.S. 2013. A review of the thermal sensitivity of the mechanics of vertebrate skeletal muscle. J. Comp. Physiol. B 183: 723–733.

    Article  PubMed  Google Scholar 

  • Jennekens F.G.I, Ten Kate L.P., De Visser M. & Wintzen A.R. 1991. Diagnostic criteria for Duchenne and Becker muscular dystrophy and myotonic dystrophy. Neuromuscul. Disord. 1: 389–391.

    Article  CAS  PubMed  Google Scholar 

  • Jobson R.W., Nabholz B. & Galtier N. 2010. An evolutionary genome scan for longevity-related natural selection in mammals. Mol. Biol. Evol. 27: 840–847.

    Article  CAS  PubMed  Google Scholar 

  • Jochum K.P., Wang X., Vennemann T.W., Sinha B. & Müllier W.E. 2012. Siliceous deep-sea sponge Monorhaphis chunk a potential paleoclimate archive in ancient animals. Chem. Geol. 300: 143–151.

    Article  CAS  Google Scholar 

  • Jones O.R., Scheuerlein A., Salguero-Gómez R., Camarda C.G., Schaible R., Casper B.B., Dahlgren J.P., Ehrlén J., Garcia M.B., Menges E.S., Quintana-Ascencio P.F., Caswell H.

  • Baudisch A. & Quintana-Ascencio P.F. 2014. Diversity of ageing across the tree of life. Nature 505: 169–173.

    Article  CAS  PubMed  Google Scholar 

  • Jové M., Naudí A., Ramírez-Núńez O., Portero-Otín M., Selman C., Withers D.J. & Pamplona R. 2014. Caloric restriction reveals a metabolomic and lipidomic signature in liver of male mice. Aging Cell 13: 828–837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keil G., Cummings E. & de Magalhaes J.P. 2015. Being cool: how body temperature influences ageing and longevity. Biogeron-tology 16: 383–397.

    Article  CAS  Google Scholar 

  • Khokhlov A.N. 2013. Impairment of regeneration in aging: appropriateness or stochastics? Biogerontology 14: 703–708.

    Article  CAS  PubMed  Google Scholar 

  • Kishi S., Uchiyama J., Baughman A.M., Goto T., Lin M.C. & Tsai S.B. 2003. The zebrafish as a vertebrate model of functional aging and very gradual senescence. Exp. Gerontol. 38: 777–786.

    Article  PubMed  Google Scholar 

  • Kitazoe Y., Kishino H., Hasegawa M., Matsui A., Lane N. & Tanaka M. 2011. Stability of mitochondrial membrane proteins in terrestrial vertebrates predicts aerobic capacity and longevity. Genome Biol. Evol. 3: 1233–1244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kluger M.J., Kozak W., Conn C.A., Leon L.R. & Soszynski D. 1998. Role of fever in disease. Ann. N. Y. Acad. Sci. 856: 224–233.

    Article  CAS  PubMed  Google Scholar 

  • Kumar D.K.V., Choi S.H., Washicosky K.J., Eimer W.A., Tucker S., Ghofrani J., Lefkowitz A., McColl G., Goldstein L.E., Tanzi R.E. & Moir, R.D. 2016. Amyloid-β peptide protects against microbial infection in mouse and worm models of Alzheimer’s disease. Sci. Transi. Med. 8: 340ra72.

  • Kuriyan A.E., Albini T.A., Townsend J.H., Rodriguez M., Pandya H.K., Leonard R.E., Parrott M.B., Rosenfeld P.J., Flynn H.W. Jr & Goldberg J.L. 2017. Vision loss after in-travitreal injection of autologous “stem cells” for AMD. New England J. Med. 376: 1047–1053.

    Article  Google Scholar 

  • Laron Z. 2008. The GH-IGF1 axis and longevity. The paradigm of IGF1 deficiency Hormones (Athens) 7: 24–27.

    Article  Google Scholar 

  • Laron Z., Kauli R., Lapkina L. & Werner H. 2016. IGF-I deficiency, longevity and cancer protection of patients with Laron syndrome. Mutat. Res. 772: 123–133.

    Article  CAS  Google Scholar 

  • Leslie M. 2008. Aging. Searching for the secrets of the super old. Science 321: 1764–1765.

    CAS  PubMed  Google Scholar 

  • López-Otín C, Blasco M.A., Partridge L., Serrano M. & Kroemer G. 2013. The hallmarks of aging. Cell 153: 1194–1217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv M., Zhu X., Wang H., Wang F. & Guan W. 2014. Roles of caloric restriction, ketogenic diet and intermittent fasting during initiation, progression and metastasis of cancer in animal models: a systematic review and meta-analysis. PloS One 9: ell5147.

  • Mariadassou M. & Pellay F.X. 2014. Identification of amino acids in mitochondrially encoded proteins that correlate with lifespan. Exp. Gerontol. 56: 53–58.

    Article  CAS  PubMed  Google Scholar 

  • Martinez D.E. & Bridge D. 2012. Hydra, the everlasting embryo, confronts aging. Int. J. Dev. Biol. 56: 479–487.

    Article  CAS  PubMed  Google Scholar 

  • Marzetti E., Carter C.S., Wohlgemuth S.E., Lees H.A., Giovan-nini S., Anderson B., Quinn L.S. & Leeuwenburgh C. 2009. Changes in IL-15 expression and death-receptor apoptotic signaling in rat gastrocnemius muscle with aging and life-long calorie restriction. Mech. Ageing Dev. 130: 272–280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masoro E.J. 2005. Overview of caloric restriction and ageing. Mech. Ageing Dev. 126: 913–922.

    Article  CAS  PubMed  Google Scholar 

  • Mattison J.A., Roth G.S., Beasley T.M., Tilmont E.M., Handy A.H., Herbert R.L., Longo D.L., Allison D.B., Young J.E., Bryant M., Barnard D., Ward W.F., Qi W., Ingram D.K. & de Cabo R. 2012. Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature 489: 318–321.

    Article  CAS  PubMed  Google Scholar 

  • Mirzaei H., Suarez J.A. & Longo V.D. 2014. Protein and amino acid restriction, aging and disease: from yeast to humans. Trends Endocrinol. Metab. 25: 558–566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizutani T. & Shimada H. 1992. Neuropathological background of twenty-seven centenarian brains. J. Neurol. Sci. 108: 168–177.

    Article  CAS  PubMed  Google Scholar 

  • Mora M. 1989. Fibrous-adipose replacement in skeletal muscle biopsy. Eur. Heart J. 10: 103–104.

    Article  PubMed  Google Scholar 

  • Nowotny K., Jung T., Grune T. & Holm A. 2014. Accumulation of modified proteins and aggregate formation in aging. Exp. Gerontol. 57: 122–131.

    Article  CAS  PubMed  Google Scholar 

  • Oh J., Lee Y.D. & Wagers A.J. 2014. Stem cell aging: mechanisms, regulators and therapeutic opportunities. Nat. Med. 20: 870–880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez V.I., Bokov A., Van Remmen H., Mele J., Ran Q., Ikeno Y. & Richardson A. 2009. Is the oxidative stress theory of aging dead? Biochim. Biophys. Acta 1790: 1005–1014.

    Article  CAS  Google Scholar 

  • Pinot M., Vanni S., Pagnotta S., Lacas-Gervais S., Payet L.A., Ferreira T., Gautier R., Goud B., Antonny B. & Barelli H. 2014. Polyunsaturated phospholipids facilitate membrane deformation and fission by endocytic proteins. Science 345: 693–697.

    Article  CAS  PubMed  Google Scholar 

  • Randall A.S., Liu C.H., Chu B., Zhang Q., Dongre S.A., Juusola M., Franze K., Wakelam M.J.O. & Hardie R.C. 2015. Speed and sensitivity of phototransduction in Drosophila depend on degree of saturation of membrane phospholipids. J. Neurosci. 35: 2731–2746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raya Á., Consiglio A., Kawakami Y., Rodriguez-Esteban C. & Izpisúa-Belmonte J.C. 2004. The zebrafish as a model of heart regeneration. Cloning Stem Cells 6: 345–351.

    Article  CAS  PubMed  Google Scholar 

  • Rigamonti A., Brennand K., Lau F. & Cowan C.A. 2011. Rapid cellular turnover in adipose tissue. PLoS One 6: e17637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roark E.B., Guilderson T.P., Dunbar R.B., Fallon S.J. & Muccia-rone D.A. 2009. Extreme longevity in proteinaceous deep-sea corals. Proc. Natl. Acad. Sci. USA 106: 5204–5208.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rucklidge G.J., Milne G., McGaw B.A., Milne E. & Robins S.P. 1992. Turnover rates of different collagen types measured by isotope ratio mass spectrometry. Biochim. Biophys. Acta 1156: 57–61.

    Article  CAS  PubMed  Google Scholar 

  • Samorajski T., Ordy J.M. & Rady-Reimer P. 1968. Lipofuscin pigment accumulationin the nervous system of aging mice. Anat. Rec. 160: 555–573.

    Article  CAS  PubMed  Google Scholar 

  • Schoenhofen E.A., Wyszynski D.F., Andersen S., Pennington J., Young R., Terry D.F., Perls T.T. 2006. Characteristics of 32 supercentenarians. J. Am. Geriatr. Soc. 54: 1237–1240.

    Article  PubMed  PubMed Central  Google Scholar 

  • Seim I., Fang X., Xiong Z., Lobanov A.V., Huang Z., Ma S., Feng Y., Turanov A.A., Zhu Y., Lenz T.L., Gerashchenko M.V., Fan D., Yim S.H., Yao X., Jordan D., Xiong Y., Ma Y., Lyapunov A.N., Chen G., Kulakova O.I., Sun Y., Lee S., Bronson R.T., Moskalev A.A., Sunyaev S.R., Zhang G., Krogh A., Wang J. & Gladyshev V.N. 2013. Genome analysis reveals insights into physiology and longevity of the Brandt’s bat Myotis brandtii. Nat. Commun. 4: 2212.

    Google Scholar 

  • Selman C, McLaren J.S., Meyer C, Duncan J.S., Redman P., Collins A.R., Duthie G.G. & Speakman J.R. 2006. Life-long vitamin C supplementation in combination with cold exposure does not affect oxidative damage or lifespan in mice, but decreases expression of antioxidant protection genes. Mech. Ageing Dev. 127: 897–904.

    Article  CAS  PubMed  Google Scholar 

  • Sharpless N.E. & DePinho R.A. 2007. How stem cells age and why this makes us grow old. Nat. Rev. Mol. Cell Biol. 8: 703–713.

    Article  CAS  PubMed  Google Scholar 

  • Sheehy M.R.J. 2002. Role of environmental temperature in aging and longevity: insights from neurolipofuscin. Arch. Gerontol. Geriatr. 34: 287–310.

    Article  CAS  PubMed  Google Scholar 

  • Shi W., Fang Z., Li L. & Luo L. 2015. Using zebrafish as the model organism to understand organ regeneration. Sci. China Life Sci. 58: 343–351.

    Article  CAS  PubMed  Google Scholar 

  • Sinclair D.A. 2005. Toward a unified theory of caloric restriction and longevity regulation. Mech. Ageing Dev. 126: 987–1002.

    Article  CAS  PubMed  Google Scholar 

  • Speakman J.R. & Garratt M. 2014. Oxidative stress as a cost of reproduction: beyond the simplistic trade-off model. Bioes-says 36: 93–106.

    Article  Google Scholar 

  • Suh Y., Atzmon G., Cho M.O., Hwang D., Liu B., Leahy D.J., Barzilai N. & Cohen P. 2008. Functionally significant insulinlike growth factor I receptor mutations in centenarians. Proc. Natl. Acad. Sci. USA 105: 3438–3442.

    Article  PubMed  PubMed Central  Google Scholar 

  • Taylor K.R., Milone N.A. & Rodriguez CE. 2017. Four cases of spontaneous neoplasia in the naked mole-rat (Heterocephalus glaber), a putative cancer-resistant species. J. Gerontol. A Biol. Sci. Med. Sci. 72: 38–43.

    Article  PubMed  Google Scholar 

  • Turner L. & Knoepfler P. 2016. Selling stem cells in the USA: assessing the direct-to-consumer industry. Cell Stem Cell 19: 154–157.

    Article  CAS  PubMed  Google Scholar 

  • Tyner S.D., Venkatachalam S., Choi J., Jones S., Ghebranious N., Igelmann H., Lu X., Soron G., Cooper B., Brayton C.

  • Park S.H., Thompson T., Karsenty G., Bradley A. & Done-hower L.A. 2002. p53 mutant mice that display early ageing-associated phenotypes. Nature 415: 45–53.

    Article  PubMed  Google Scholar 

  • Valenzano D.R., Terzibasi E., Cattaneo A., Domenici L. & Cellerino A. 2006. Temperature affects longevity and age-related locomotor and cognitive decay in the short-lived fish Notho-branchius furzeri. Aging Cell. 5: 275–278.

    Article  CAS  PubMed  Google Scholar 

  • Vásquez V., Krieg M., Lockhead D. & Goodman M.B. 2014. Phospholipids that contain polyunsaturated fatty acids enhance neuronal cell mechanics and touch sensation. Cell Rep. 6: 70–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vermulst M., Bielas J.H., Kujoth G.C., Ladiges W.C., Rabi-novitch P.S., Prolla T.A. & Loeb L.A. 2007. Mitochondrial point mutations do not limit the natural lifespan of mice. Nat. Genet. 39: 540–543.

    Article  CAS  PubMed  Google Scholar 

  • Verziji N., DeGroot J., Thorpe S.R., Bank R.A., Shaw J.N., Lyons T.J., Bijlsma J.W., Lafeber F.P., Baynes J.W. & TeKoppele J.M. 2000. Effect of collagen turnover on the accumulation of advanced glycation end products. J. Biol. Chem. 275: 39027–39031.

    Article  Google Scholar 

  • Weidemann F., Sanchez-Nińo M.D., Politei J., Oliveira J.P., Wanner C., Warnock D.G. & Ortiz A. 2013. Fibrosis: a key feature of Fabry disease with potential therapeutic implications. Or-phanet J. Rare Dis. 8: 116.

    Article  Google Scholar 

  • Wick G., Berger P., Jansen-Dürr P. & Grubeck-Loebenstein B. 2003. A Darwinian-evolutionary concept of age-related diseases. Exp. Gerontol. 38: 13–25.

    Article  PubMed  Google Scholar 

  • Wilkinson G.S. & South J.M. 2002. Life history, ecology and longevity in bats. Aging Cell. 1: 124–131.

    Article  CAS  PubMed  Google Scholar 

  • Williams S.A. & Shattuck M.R. 2015. Ecology, longevity and naked mole-rats: confounding effects of sociality? Proc. Biol. Sci. 282: 20141664.

  • Zhang J., Lian Q., Zhu G., Zhou F., Sui L., Tan C., Mutalif R.A., Navasankari R., Zhang Y., Tse H.F., Stewart CL. & Colman A. 2011. A human iPSC model of Hutchinson Gilford Progeria reveals vascular smooth muscle and mesenchymal stem cell defects. Cell Stem Cell 8: 31–45.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Peregrim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peregrim, I. Why we age — a new evolutionary view. Biologia 72, 475–485 (2017). https://doi.org/10.1515/biolog-2017-0064

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2017-0064

Key words

Navigation