Skip to main content

Advertisement

Log in

Functional studies of AtACR2 gene putatively involved in accumulation, reduction and/or sequestration of arsenic species in plants

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Food-based exposure to arsenic is a human carcinogen and can severely impact human health resulting in many cancerous diseases and various neurological and vascular disorders. This project is a part of our attempts to develop new varieties of crops for avoiding arsenic contaminated foods. For this purpose, we have previously identified four key genes, and molecular functions of two of these, AtACR2 and AtPCS1, have been studied based on both in silico and in vivo experiments. In the present study, a T-DNA tagged mutant, (SALK_143282C with mutation in AtACR2 gene) of Arabidopsis thaliana was studied for further verification of the function of AtACR2 gene. Semi-quantitative RT-PCR analyses revealed that this mutant exhibits a significantly reduced expression of the AtACR2 gene. When exposed to 100 μM of arsenate (AsV) for three weeks, the mutant plants accumulated arsenic approximately three times higher (778 μg/g d. wt.) than that observed in the control plants (235 μg/g d. wt.). In contrast, when the plants were exposed to 100 j.M of arsenite (AsIII), no significant difference in arsenic accumulation was observed between the control and the mutant plants (535 μg/g d. wt. and 498 μg/g d. wt., respectively). Also, when arsenate and arsenite was measured separately either in shoots or roots, significant differences in accumulation of these substances were observed between the mutant and the control plants. These results suggest that AtACR2 gene is involved not only in accumulation of arsenic in plants, but also in conversion of arsenate to arsenite inside the plant cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACR2:

arsenate reductase 2

As:

arsenic

AsIII:

arsenite

AsV:

arsenate

DMA:

dimethylarsinic acid

GAPDH:

glyceraldehyde-3-phosphate dehydrogenase

Gpase:

glycogen phosphorylase

Grx:

glutaredoxin

GSH:

glutathione

ICP-DRC-MS:

inductively coupled plasma dynamic reaction cell mass spectrometry

ICV:

initial calibration verification

MMA:

monomethylarsonic acid

MS:

Murashige-Skoog

MT:

mutant type

PNPase:

purine nucleoside phosphorylase

PT-Pase:

protein tyrosine phosphatase

WT:

wild type

References

  • Ali W., Isayenkov S.V., Zhao F.J. & Maathuis F.J. 2009. Arsenite transport in plants. Cell. Mol. Life Sci. 66: 2329–2339.

    Article  CAS  Google Scholar 

  • Bhattacharjee H. & Rosen B.P. 2007. Arsenic metabolism in prokaryotic and eukaryotic microbes, pp. 371–406. In: Nies D.H. & Silver S. (eds) Molecular Microbiology of Heavy Metals. Springer-Verlag, Berlin, Germany.

    Chapter  Google Scholar 

  • Bleeker P.M., Hakvoort H.W.J., Bliek M., Souer E. & Schat H. 2006. Enhanced arsenate reduction by a CDC25-like tyrosine phosphatase explains increased phytochelatin accumulation in arsenate tolerant Holcus lanatus. Plant J. 45: 917–929.

    Article  CAS  Google Scholar 

  • Blum R., Beck A., Korte A., Stengel A., Letzel T., Lendzian K. & Grill E. 2007. Function of phytochelatin synthase in catabolism of glutathione-conjugates. Plant J. 49: 740–749.

    Article  CAS  Google Scholar 

  • Bundschuh J., Nath B., Bhattacharya P., Liu C.W., Armienta M.A., Moreno Lopez M.V., Lopez D.L., Jean J.S., Cornejo L., Lauer Macedo L.F. & Filho A.T. 2012. Arsenic in the human food chain: the Latin American perspective. Sci. Total Environ. 429: 92–106.

    Article  CAS  Google Scholar 

  • Cobbett C.S. 2000. Phytochelatins and their roles in heavy metal detoxification. Plant Physiol. 123: 825–832.

    Article  CAS  Google Scholar 

  • Dhankher O.P., Rosen B.P., McKinney E.C. & Meagher R.B. 2006. Hyperaccumulation of arsenic in the shoots of Ara-bidopsis silenced for arsenate reductase (ACR2). Proc. Natl. Acad. Sci. USA 103: 5413–5418.

    Article  CAS  Google Scholar 

  • Duan G.L., Zhou Y., Tong Y.P., Mukhopadhyay R., Rosen B.P. & Zhu Y.G. 2007. A CDC25 homologue from rice functions as an arsenate reductase. New Phytologist 174: 311–321.

    Article  CAS  Google Scholar 

  • Elke M., Lorentzen L. & Kingston H.M. 1996. Comparison of microwave-assisted and conventional leaching using EPA method 3050B. Anal. Chem. 68: 4316–4320.

    Article  Google Scholar 

  • Ellis D.R., Gumaelius L., Indriolo E., Pickering I. J., Banks J.A. & Salt D.E. 2006. A novel arsenate reductase from the arsenic hyperaccumulating fern Pteris vittata. Plant Physiol. 141: 1544–1554.

    Article  CAS  Google Scholar 

  • Gregus Z. & Nemeti B. 2002. Purine nucleoside phosphorylase as a cytosolic arsenate reductase. Toxicol. Sci. 70: 13–19.

    Article  CAS  Google Scholar 

  • Gregus Z. & Nemeti B. 2005. The glycolytic enzyme glyceralde-hyde-3-phosphate dehydrogenase works as an arsenate reductase in human red blood cells and rat liver cytosol. Toxicol. Sci. 85: 859–869.

    Article  CAS  Google Scholar 

  • Gregus Z. & Nemeti B. 2007. Glutathione-dependent reduction of arsenate by glycogen phosphorylase responsiveness to endogenous and xenobiotic inhibitors. Toxicol. Sci. 100: 44–53.

    Article  CAS  Google Scholar 

  • Halder D., Bhowmick S., Biswas A., Mandal U., Nriagu J., Guha Mazumder D.N., Chatterjee D. & Bhattacharya P. 2012. Consumption of brown rice: a potential pathway for arsenic exposure in rural Bengal. Environ. Sci. Technol. 46: 4142–4148.

    Article  CAS  Google Scholar 

  • Koch I., Wang L., Ollson C, Cullen W.R. & Reimer K.J. 2000. The predominance of inorganic arsenic species in plants from Yellowknife, Northwest Territories, Canada. Environ. Sci. Technol. 34: 22–26.

    Article  CAS  Google Scholar 

  • Landrieu L, da Costa M., De Veylder L., Dewitte F., Vandepoele K., Hassan S., Wieruszeski J.M., Corellou F., Faure J.D., Van Montagu M., Inze D. & Lippens G. 2004. A small CDC25 dual-specificity tyrosine-phosphatase isoform in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 101: 13380–13385.

    Article  CAS  Google Scholar 

  • Liu W., Schat H., Bliek M., Chen Y., McGrath S.P., George G., Salt D.E. & Zhao F.J. 2012. Knocking out ACR2 does not affect arsenic redox status in Arabidopsis thaliana: implications for As detoxification and accumulation in plants. PLoS One 7: e42408.

  • Lombi E., Zhao F.J., Fuhrmann M., Ma L.Q. & McGrath S.P. 2002. Arsenic distribution and speciation in the fronds of the hyperaccumulator Pteris vittata. New Phytol. 156: 195–203.

    Article  CAS  Google Scholar 

  • Lund D., Larsson D., Nahar N. & Mandal A. 2010. Arsenic accumulation in plants - outlining strategies for developing improved variety of crops for avoiding arsenic toxicity in foods. J. Biol. Sys. 18: 223–224.

    Article  Google Scholar 

  • Lutsenko S. & Arguello J.M. 2012. Metal Transporters: Current Topics in Membranes. Academic Press, Waltham, USA, 328 pp. ISBN 978-0-12-394390-3.

    Google Scholar 

  • Meharg A.A. & Hartley-Whitaker J. 2002. Arsenic uptake and metabolism in arsenic resistant and non-resistant plant species. New Phytol. 154: 29–43.

    Article  CAS  Google Scholar 

  • Messens J. & Silver S. 2006. Arsenate reduction: thiol cascade chemistry with convergent evolution. J. Mol. Biol. 362: 1–17.

    Article  CAS  Google Scholar 

  • Mukhopadhyay R., Shi J. & Rosen B.P. 2000. Purification and characterization of ACR2p, the Saccharomyces cerevisiae arsenate reductase. J. Biol. Chem. 275: 21149–21157.

    Article  CAS  Google Scholar 

  • Murashige T. & Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco cultures. Physiol. Plant. 15: 473–497.

    Article  CAS  Google Scholar 

  • Nahar N., Rahman A., Mos M., Warzecha T., Algerin M., Ghosh S., Johnson-Brousseau S. & Mandal A. 2012. In silico and in vivo studies of an Arabidopsis thaliana gene ACR2 putatively involved in arsenic accumulation in plants. J. Mol. Model. 18: 4249–4262.

    Article  CAS  Google Scholar 

  • Neidhardt H., Norra S., Tang X., Guo H. & Stuben D. 2012. Impact of irrigation with high arsenic burden groundwater on the soil-plant system: result from a case study in the Inner Mongolia, China. Environ. Poll. 163: 8–13.

    Article  CAS  Google Scholar 

  • Rahman A., Nahar N., Nawani N.N., Jass J., Desale P., Kapadnis B.P., Hossain K., Saha A.K., Ghosh S., Olsson B. & Mandal A. 2014. Isolation of a Lysinibacillus strain Bl-CDA showing potentials for arsenic bioremediation. J. Environ. Sci. Health, Part A. 49: 1349–1360.

    Article  CAS  Google Scholar 

  • Rahman A., Nahar N., Nawani N.N., Jass J., Ghosh S., Olsson B. & Mandal A. 2015. Comparative genome analysis of Lysinibacillus Bl-CDA, a bacterium that accumulates arsenics. Genomics 106: 384–392.

    Article  CAS  Google Scholar 

  • Tripathi R.D., Srivastava S., Mishra S., Singh N., Tuli R., Gupta D.K. Maathuis F.J.M. 2007. Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol. 25: 158–165.

    Article  CAS  Google Scholar 

  • Van den Broeck K., Vandecasteele C. & Geuns J.M.C. 1998. Speciation by liquid chromatography-inductively coupled plasma-mass spectrometry of arsenic in mung bean seedlings used as a bio-indicator for arsenic contamination. Anal. Chim. Acta 361: 101–111.

    Article  Google Scholar 

  • Webb S.M., Gaillard J.F., Ma L., Tu C. 2003. XAS speciation of arsenic in a hyper-accumulating fern. Environ. Sci. Technol. 37: 754–760.

    Article  CAS  Google Scholar 

  • Wood S.A., Tait CD. & Janecky D.R. 2002. A Raman spectroscopic study of arsenite and thioarsenite species in aqueous solution at 25 °C. Geochem. Trans. 3: 31.

    Article  Google Scholar 

  • Zhou Y., Messier N., Ouellette M., Rosen B.P. & Mukhopadhyay R. 2004. Leishmania major LmACR2 is a pentavalent antimony reductase that confers sensitivity to the drug Pen-tostam. J. Biol. Chem. 279: 37445–37451.

    Article  CAS  Google Scholar 

  • Zhao F.J, Ma J.F, Meharg A.A, McGrath S.P. 2009 Arsenic uptake and metabolism in plants. New Phytol. 181: 777–794.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aminur Rahman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nahar, N., Rahman, A., Ghosh, S. et al. Functional studies of AtACR2 gene putatively involved in accumulation, reduction and/or sequestration of arsenic species in plants. Biologia 72, 520–526 (2017). https://doi.org/10.1515/biolog-2017-0062

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2017-0062

Key words

Navigation