Skip to main content
Log in

Artificial Neural Networks approach in morphometric analysis of crayfish (Astacus leptodactylus) in Hirfanlı Dam Lake

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

This study aims to compare the growth estimation of narrow-clawed crayfish (Astacus leptodactylus Eschscholtz, 1823) obtained from two methods which are length-weight relations and Artificial Neural Networks (ANNs) from Hirfanlı Dam Lake in 2013 and 2014. The growth estimation of 325 crayfish was carried out with both methods and the obtained results were compared. Then, the estimated values found via both methods were examined. Correlation coefficient (r), sum square error (SSE), mean absolute percentage error performance criteria (MAPE) were used for comparison of artificial neural network and linear regression models goodness of fit. The results of the current study show that compared to linear regression models, ANNs is a superior estimation tool. Thus, as an outcome of the present study, ANNs can be considered as a more efficient method especially in the growth estimation of the species in biological systems. Another outcome of this study is that crayfish of Hirfanlı Dam Lake well accommodates itself to the ecologic features of the environment and so its growth features are similar to the values of other water systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atar H.H. & Seçer S. 2003. Width/length-weight relationships of the blue crab (Callinectes sapidus Rathbun 1896) population living in Beymelek Lagoon Lake. Turk. J. Vet. Anim. Sci. 27 (2): 443–447.

    Google Scholar 

  • Balık S., Ustaoğlu M.R., Sarı H.M. & Berber S. 2005. Determination of traits some growth and morphometric of crayfish (Astacus leptodactylus Eschscholtz, 1823) at Demirköprü Dam Lake (Manisa). Ege J. Fish. Aquat. Sci. 22 (1-2): 83–89. DOI: https://doi.org/10.12714/egejfas.2005.22.1.5000156891

    Google Scholar 

  • Benzer S. & Benzer R. 2016. Evaluation of growth in pike (Esox lucius L., 1758) using traditional methods and artificial neural networks. Appl. Ecol. Environ. Res. 14 (2): 543–554. DOI: https://doi.org/10.15666/aeer/1402_543554

    Article  Google Scholar 

  • Benzer S., Benzer R. & Gül A. 2016. Artificial Neural Network applications for biological systems: The case study of Pseudo-rasbora parva. Chapter 5, pp. 49–58. In: Efe R., Matchavariani L., Yaldir A. & Lévai L. (eds), Developments in Science and Engineering, St. Kliment Ohridski University Press, Sofia, 769 pp. ISBN: 978-954-07-4137-6

  • Benzer S., Karasu Benli Ç. & Benzer R. 2015. The comparison of growth with length-weight relation and artificial neural networks of crayfish, Astacus leptodactylus, in Mogan Lake. J. Black Sea Mediter. Environ. 21 (2): 208–223.

    Google Scholar 

  • Berber S. & Balık S. 2006. Determination of traits some growth and morphometric of crayfish (Astacus leptodactylus Eschscholtz, 1823) at Manyas Lake (Balı kesir). Ege J. Fish. Aquat. Sci. 23 (1–2): 83–91. DOI: https://doi.org/10.12714/egejfas.2006.23.1.5000156695

    Google Scholar 

  • Berber S. & Balık S. 2009. The length-weight relationships, and meat yield of crayfish (Astacus leptodactylus Eschcholtz, 1823) population in Apolyont Lake (Bursa, Turkey). J. Fish. Sci. 3 (2): 86–99. DOI: https://doi.org/10.3153/jfscom.2009012

    Google Scholar 

  • Brosse S., Guegan J., Tourenq J. & Lek S. 1999. The use of artificial neural networks to assess fish abundance and spatial occupancy in the littoral zone of a mesotrophic lake. Ecol. Modell. 120 (2-3): 299–311. DOI: https://doi.org/10.1016/S0304-3800(99)00110-6

    Article  Google Scholar 

  • Deniz T.B., Aydın C. & Ates C. 2013. A study on some morphological characteristics of Astacus leptodactylus (Eschscholtz 1823) in seven different inland waters in Turkey. J. Black Sea Mediter. Environ. 19 (2): 190–205.

    Google Scholar 

  • DSİ. 1968. Limnological survey report of Hirfanli Dam Lake. Ankara, 216 pp.

    Google Scholar 

  • Ekici B.B. & Aksoy U.T. 1993. Prediction of building energy consumption by using artificial neural networks. Advances in Engineering Software 40 (5): 356–362. DOI: https://doi.org/10.1016/j.advengsoft.2008.05.003

    Article  Google Scholar 

  • Evans J.D. 1996. Straightforward Statistics for the Behavioral Sciences. Pacific Grove, CA: Brooks/Cole Publishing, 600 pp. ISBN: 0534231004, 9780534231002

    Google Scholar 

  • Füreder L., Oberkofler B., Hanel R., Leiter J. & Thaler B. 2003. The freshwater crayfish Austropotamobius pallipes in South Tyrol: Heritage species and bioindicator. [l’écrevisse Austropotamobius pallipes dans le Tyrol du Sud: espèce patrimoniale et bioindicateur]. Bull. Fr. Pêche Piscic. 370-371: 79–95. DOI: https://doi.org/10.1051/kmae:2003005

    Article  Google Scholar 

  • Gentry T.W., Wiliamowski B.M. & Weatherford L.R. 1995. A comparison of traditional forecasting techniques and neural networks, pp. 765–770. In: Dagli C.H., Akay M., Chen C.L.P., Fernández B.R. & Ghosh J. (eds), Intelligent Engineering Systems Through Artificial Neural Networks Vol. 5, Fuzzy Logic and Evolutionary Programming, American Society of Mechanical Engineers (ASME), 1056 pp. ISBN-10: 0791800482

  • Gillet C. & Laurent P.J. 1995. Tail length variations among noble crayfish (Astacus astacus (L)) populations. Freshwater Crayfish 10: 31–36.

    Google Scholar 

  • Hald A. 1952. Statistical Theory with Engineering Applications. Wiley, New York, 783 pp. ISBN-10: 0471340561

    Google Scholar 

  • Harlioğlu M.M. 1999. The relationships between length—weight, and meat yield of freshwater crayfish, Astacus leptodactylus Eschscholtz, in the Ağın Region of Keban Dam Lake. Turk. J. Zool. 23 (EK3): 949–958.

    Google Scholar 

  • Harlioğlu M.M. & Harlioğlu A.G. 2005. Eğirdir, İznik Gölleri ve Hirfanlı Baraj Gölünden Avlanan Tatlı Su İstakozu Astacus leptodactylus (Eschscholtz, 1823)’un Morfometrik Analizleri ile Et Verimlerinin Karşılaştırılması [The comparison of morphometric analysis and meat yield contents of freshwater crayfish, Astacus leptodactylus (Esch 1823) caught from İznik, Eğirdir Lakes and Hirfanlı Dam Lake]. Fırat Üniversitesi Mühendislik Fakültesi Dergisi [Science and Engineering Journal of Fırat University] 17 (2): 412–423.

    Google Scholar 

  • Haykin S. 1999. Neural Networks: A Comprehensive Foundation, Perenctice Hall, New Jersey, 842 pp. ISBN: 0132733501, 9780132733502

    Google Scholar 

  • Hopgood A.A. 2000. Intelligent Systems for Engineers and Scientists. 2nd edn. CRC Press, Forida, 488 pp. ISBN: 0-8493-0456-3

    Book  Google Scholar 

  • Krenker A., Bešter J. & Kos A. 2011. Introduction to the Artificial Neural Networks, pp. 3–18. DOI: https://doi.org/10.5772/15751. In: Suzuki K. (ed.), Artificial Neural Networks - Methodological Advances and Biomedical Applications, 362 pp. ISBN: 978-953-307-243-2

  • Lewis C.D. 1982. Industrial and Business Forecasting Methods. London: Butterworths, 144 pp. DOI: https://doi.org/10.1002/for.3980020210

    Google Scholar 

  • Lindqvist O.V. & Lahti E. 1983. On the sexual dimorphism and condition index in the crayfish Astacus astacus L. in Finland. Freshwater Crayfish 5: 3–11.

    Google Scholar 

  • Maravelias C.D., Haralabous J. & Papaconstantinou C. 2003. Predicting demersal fish species distributions in the Mediterranean Sea using artificial neural networks. Mar. Ecol. Prog. Ser. 255: 249–258. DOI: https://doi.org/10.3354/meps255249

    Article  Google Scholar 

  • Mastrorillo S., Lek S., Dauba F. & Belaud A. 1997. The use of artificial neural networks to predict the presence of small-bodied fish in river. Freshwater Biol. 38 (2): 237–246. DOI: https://doi.org/10.1046/j.1365-2427.1997.00209.x

    Article  Google Scholar 

  • Mendes B., Fonseca P. & Campos A. 2004. Weight-length relationships for 46 fish species of the Portuguese west coast. J. Appl. Ichthyol. 20 (5): 355–361. DOI: https://doi.org/10.1111/j.1439-0426.2004.00559.x

    Article  Google Scholar 

  • Morato T., Afonso P., Lourinho P., Barreiros J.P., Santos R.S. & Nash R.D.M. 2001. Length—weight relationships for 21 coastal fish species of the Azores, north-eastern Atlantic. Fish. Res. 50 (3): 297–302. DOI: https://doi.org/10.1016/S0165-7836(00)00215-0

    Article  Google Scholar 

  • Obach M., Wagner R., Werner H. & Schmidt H.H. 2001. Modelling population dynamics of aquatic insects with artificial neural networks. Ecol. Modell. 146 (1-3): 207–217. DOI: https://doi.org/10.1016/S0304-3800(01)00307-6

    Google Scholar 

  • Panofsky H.A. & Brier G.W. 1968. Some Applications of Statistics to Meteorology. Pennsylvania State University, University Park, 224 pp.

    Google Scholar 

  • Park Y.S., Verdonschot P.F.M., Chon T.S. & Lek S. 2003. Patterning and predicting aquatic macro invertabrate diversities using artificial neural network. Water Res. 37 (8): 1749–1758. DOI: https://doi.org/10.1016/S0043-1354(02)00557-2

    Article  CAS  Google Scholar 

  • Primavera J.H., Parado-Estepa F.D. & Lebata J.L. 1998. Morphometric relationship of length and weight of giant tiger prawn Penaeus monodon according to life stage, sex and source. Aquaculture 164 (1-4): 67–75. DOI: https://doi.org/10.1016/S0044-8486(98)00177-X

    Article  Google Scholar 

  • Rhodes C.P. & Holdich D.M. 1979. On size and sexual dimorphism in Austropotamobius pallipes (Lereboullet) - A step in assessing the commercial exploitation potential of the native British freshwater crayfish. Aquaculture 17 (4): 345–358. DOI: https://doi.org/10.1016/0044-8486(79)90089-9

    Article  Google Scholar 

  • Ricker W.E. 1973. Linear regressions in fishery research. J. Fish. Res. Board Can. 30 (3): 409–434. DOI: https://doi.org/10.1139/f73-072

    Article  Google Scholar 

  • Romaire R.P., Forester J.S. & Avault J.W. 1977. Length-weight relationships of two commercially important crayfishes of the genus Procambarus. Freshwater Crayfish 3: 463–470.

    Google Scholar 

  • Rumelhart D.E., Hinton G.E. & Williams R.J. 1986. Learning internal representations by error propagation, pp. 318–362. In: Parallel Distributed Processing. Explorations in the Mi-crostructure of Cognition, Vol. 1, MIT Press, Cambridge, MA, USA, 567 pp. ISBN: 0-262-18120-7

    Google Scholar 

  • Sinovcic G., Franicevic M., Zorica B. & Ciles-Kec V 2004. Length—weight and length—length relationships for 10 pelagic fish species from the Adriatic Sea (Croatia). J. Appl. Ichthyol. 20 (2): 156–158. DOI: https://doi.org/10.1046/j.1439-0426.2003.00519.x

    Article  Google Scholar 

  • Skurdal J. & Qvenild T. 1986. Growth, maturity, and fecundity of Astacus astacus in lake Steinfjorden, S.E. Norway. Freshwater Crayfish 6: 182–186.

    Google Scholar 

  • Souty-Grosset C, Holdrich D.M., Noel P.Y., Reynolds J.D. & Haffner P. (eds). 2006. Atlas of Crayfish in Europe. Publications Scientifiques du Museum national d’Histoire naturelle, Paris, Patrimoines naturels Vol. 64, 187 pp. ISBN: 978-2-85653-579-0

  • Sun L., Xiao H., Li S. & Yang D. 2009. Forecasting fish stock recruitment and planning optimal harvesting strategies by using neural network. Journal of Computers 4 (11): 1075–1082. DOI: https://doi.org/10.4304/jcp.4.11.1075-1082

    Article  Google Scholar 

  • Suryanarayana I., Braibanti A., Rao R.S., Ramamc V.A., Su-darsan D. & Rao G.N. 2008. Neural networks in fisheries research. Fish Res. 92 (2-3): 115–139. DOI: https://doi.org/10.1016/j.fishres.2008.01.012

    Article  Google Scholar 

  • Tesch F.W. 1971. Age and growth, p. 99–130. In: Ricker W.E. (ed.), Methods for Assessment of Fish Production in Fresh Waters, 2nd edn., Blackwell Scientific Publications, Oxford, 348 pp. ISBN-10: 0632084901

  • Tosunoğlu Z., Aydın C., Özaydın O. & Leblebici S. 2007. Trawl codend mesh selectivity of braided PE material for Parapenaeus longirostris (Lucas, 1846) (Decapoda, Penaeidae). Crustaceana 80 (9): 1087–1094. DOI: https://doi.org/10.1163/156854007782008649

    Article  Google Scholar 

  • Tureli Bilen C., Kokcu P. & Ibrikci T. 2011. Application of artificial neural networks (ANNs) for weight predictions of blue crabs (Callinectes sapidus Rathbun, 1896) using predictor variables. Medit. Mar. Sci. 12 (2): 439–446. DOI: https://doi.org/10.12681/mms.43

    Article  Google Scholar 

  • Witt S.F. & Witt C.A. 1992. Modeling and Forecasting Demand in Tourism. Londra: Academic Press, 195 pp. ISBN: 0-127-60740-4

    Google Scholar 

  • Yanez E., Plaza F., Gutierrezestrada J.C., Rodriquez N., Barbieri M.A., Pulido-Calvo I. & Borquez C. 2010. Anchovy (Engraulis ringens) and sardine (Sardinops sagax) abundance forecast off northern Chile: A multivariate ecosystem neural network approach. Oceanography 87: 242–250. DOI: https://doi.org/10.1016/j.pocean.2010.09.015

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Recep Benzer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benzer, S., Benzer, R. & Günal, A.Ç. Artificial Neural Networks approach in morphometric analysis of crayfish (Astacus leptodactylus) in Hirfanlı Dam Lake. Biologia 72, 527–535 (2017). https://doi.org/10.1515/biolog-2017-0052

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2017-0052

Key words

Navigation