Skip to main content

Advertisement

Log in

Bioassessment of streams based on macroinvertebrates — can sampling of some substrate types be excluded?

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Attempting to help reduce the costs of bioassessment of aquatic habitats, the aim of this study was to estimate how particular substrate types influence the ecological quality evaluation based on a multihabitat scheme proposed by the AQEM/STAR consortium. Samples of macroinvertebrates were taken from the Stupavský potok brook, a small, 4th order calcareous stream in the Small Carpathians in Slovakia (Central Europe). Eight most suitable metrics for small Slovakian streams forming the Slovak multimetric index on seven substrate types were tested and compared with the multihabitat sample. The Saprobic Index (SI) and Index of Biocenotic Region (IBR) showed considerably worse (higher) values in the psammal and the best (lowest) values on coarse mineral substrates (lithal, akal). Similarly, values of the metrics Oligo (%), BMWP Score, Rheoindex, Rhithron Typie Index (%) and EPT reached their worst (lowest) values on psammal and the best (highest) values on coarse mineral substrates. Psammal sample showed the worst ecological quality expressed by the lowest EQR (Ecological Quality Ratio) value, most significantly differing from the multihabitat sample (Multiple Comparisons of Means: Dunnett Contrasts: −8.25, P < 0.01). We conclude that substrate types considerably influence selected metrics. Because of a relatively substantial proportion of psammal in some small Slovakian streams and its marginal influence on the overall ecological quality of the site, we suggest conduct further research addressing the effectiveness of its usage in the water management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

SI:

Saprobic Index (Zelinka and Marvan)

Oligo (%):

proportion of individuals with a preference for oligo-saprobic conditions (scored taxa = 100%)

BMWP:

Biological Monitoring Working Party

RTI:

Rhithron Typie Index

IBCR:

Index of Biocoenotic Region

Aka+Lit+Psa (%):

proportion of individuals with a preference for gravel, lithal and sand (scored taxa = 100%)

EPT:

number of Ephemeroptera, Plecoptera and Trichoptera taxa, Rheoindex -Banning, with abundance classes. Term “scored taxa = 100%” means that only taxa for which autecological information was available were included in the metric calculation.

References

  • Anonymous 2003. Monitoring under the Water Framework Directive. Common Implementation Strategy for the Water Framework Directive (2000/60/EC) Guidance Document No. 7, Produced by Working Group 2.7 — Monitoring, Office for Official Publications of the European Communities, Luxemburg, 153 pp. ISBN: 92-894-5127-0

    Google Scholar 

  • AQEM Consortium 2002. Manual for the Application of the AQEM System. A Comprehensive Method to Assess European Streams Using Benthic Macroinvertebrates, Developed for the Purpose of the Water Framework Directive. Version 1.0, February 2002, 202 pp.

    Google Scholar 

  • Barbour M.T., Gerritsen J., Snyder B.D. & Stribling J.B. 1999. Rapid bioassessment protocols for use in streams and wadeable rivers: Periphyton, benthic macroinvertebrates and fish. Second Ed. EPA 841-B-99-002. U.S. Environmental Protection Agency, Office of Water, Washington, D.C., 339 pp.

    Google Scholar 

  • Brabec K., Zahrádková S., Němejcová D., Pařil P., Kokeš J. & Jarkovský J. 2004. Assessment of organic pollution effect considering differences between lotic and lentic stream habitats. Hydrobiologia 516: 331–346. DOI: https://doi.org/10.1023/B:HYDR.0000025274.47757.85

    Article  CAS  Google Scholar 

  • Brown A.V. & Brussock P.P. 1991. Comparisons of benthic invertebrates between riffles and pools. Hydrobiologia 220: 99–108. DOI: https://doi.org/10.1007/BF00006542

    Article  Google Scholar 

  • Buffagni A., Erba S., Cazzola M. & Kemp J.L. 2004. The AQEM multimetric system for the southern Italian Apennines: assessing the impact of water quality and habitat degradation on pool macroinvertebrates in Mediterranean rivers. Hydrobiologia 516: 313–329. DOI: https://doi.org/10.1023/B:HYDR.0000025273.15958.6a

    Article  Google Scholar 

  • Buffagni A., Kemp J.L., Erba S., Belfiore C., Hering D. & Moog O. 2001. A Europe-wide system for assessing the quality of rivers using macroinvertebrates: the AQEM Project and its importance for southern Europe (with special emphasis on Italy). J. Limnol. 60 (suppl. 1): 39–48. DOI: https://doi.org/10.4081/jlim-nol.2001.s1.39

    Article  Google Scholar 

  • Dallas H.F. 2007. The influence of biotope availability on macroinvertebrate assemblages in South African rivers: implications for aquatic bioassessment. Freshwater Biol. 52 (2): 370–380. DOI: https://doi.org/10.1111/j.1365-2427.2006.01684.x

    Article  Google Scholar 

  • Derka T., Kováčová J. & Bulánková E. 2001. Substrate importance for selected macrozoobenthic communities in Rudava river. Folia Faunistica Slovaca 6: 59–68.

    Google Scholar 

  • Dudley T. 1988. The role of plant complexity and epiphyton in colonizaton of macrophytes by stream insects. Verh. Int. Verein. Limnol. 23: 1153–1158.

    Google Scholar 

  • European Commision 2000, Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy, Official Journal of the European Communities. L237, Vol. 43: 1–71, European Commission, Brussels.

    Google Scholar 

  • Frontier S. 1985. Diversity and structure in aquatic ecosystems, pp. 253–312. In: Barnes H., Barnes M. (eds), Oceanogr. Mar. Biol. Annu. Rev. Vol. 23, Aberdeen University Press, Aberdeen, 590 pp. ISBN: 9781482267259

    Google Scholar 

  • Gavlasová S. & Derka T. 2004. Význam submerzných koreňov pobrežných drevín pre spoločenstvá makrozoobentosu rieky Jelešňa [The importance of submerged roots of riparian trees for the macroinvertebrate communities of the Jelešňa River]. Acta Facultatis Ecologiae, Fakulta ekológie a environmentalistiky Technickej univerzity Zvolen 12: 65–72.

    Google Scholar 

  • Godfrey P.J. 2003. A review of the invertebrate interest of coarse woody debris in England. English Nature Research Reports, Number 513. Northminster House, Peterborough, UK, 51 pp.

    Google Scholar 

  • Gregory M.B. 2005. Microhabitat preferences by aquatic invertebrates influence bioassessment metrics in Piedmont streams of Georgia and Alabama. In: Hatcher K.J. (ed.), Proceedings of the 2005 Georgia Water Resources Conference, April 25–27, 2005, University of Georgia. https://doi.org/water.usgs.gov/nawqa/urban/pdf/GWRC05_Gregory.pdfnawqa/urban/pdf/GWRC05_Gregory.pdf (accessed 01.12. 2016)

  • Gregory S.V., Swanson F.J., McKee W.A. & Cummins K.W. 1991. An ecosystem perspective of riparian zones. Bioscience 41: 540–551.

    Article  Google Scholar 

  • Harrod J.J. 1964. The distribution of invertebrates on submersed aquatic plants in a chalk stream. J. Anim. Ecology 33: 335–348. DOI: https://doi.org/10.2307/2634

    Article  Google Scholar 

  • Hering D., Kail J., Eckert S., Gerhard M., Meyer E.I., Mutz M., Reich M. & Weiß I. 2000. Coarse woody debris quantity and distribution in Central European streams. Int. Rev. Hydrobiol. 85: 5–23. DOI: https://doi.org/10.1002/(SICI)1522-2632(200003)85:1<5::AID-IROH5>3.0.CO;2-X

    Article  Google Scholar 

  • Hoffmann A. 2000. The association of the stream caddisfly Lasiocephala basalis (Kol) (Trichoptera: Lepidostomatidae) with wood. Int. Rev. Hydrobiol. 85: 79–93. DOI: https://doi.org/10.1002/(SICI)1522-2632(200003)85:1<79::AID-IROH79>3.0.CO;2-U

    Article  Google Scholar 

  • Hoffmann A. & Hering D. 2000. Wood-associated macroinvertebrate fauna in Central European streams. Int. Rev. Hydrobiol. 85: 25–48. DOI: https://doi.org/10.1002/(SICI)1522-2632(200003)85:1<25::AID-IROH25>3.0.CO;2-R

    Article  Google Scholar 

  • Jähnig S.C. & Lorenz A.W. 2008. Substrate-specific macroin-vertebrate diversity patterns following stream restoration. Aquat. Sci. 70: 292–303. DOI: https://doi.org/10.1007/s00027-008-8042-0

    Article  Google Scholar 

  • Jensen K. & Madsen T. 1989. Invertebrate graze submersed rooted macrophytes in lowland streams. Oikos 55: 421–423.

    Google Scholar 

  • Jowett I.G. & Richardson J. 1990. Microhabitat preferences of benthic invertebrates in a New Zealand river and the development of in-stream flow-habitat models for Deleatidium spp., New Zeal. J. Mar. Fresh. 24: 19–30. DOI: https://doi.org/10.1080/00288330.1990.9516399

    Article  Google Scholar 

  • Jowett I.G., Richardson J., Biggs B.J.F., Hickey C.W. & Quinn J.M. 1991. Microhabitat preferences of benthic invertebrates and the development of generalised Deleatidium spp. habitat suitability curves, applied to 4 New-Zealand rivers, New Zeal. J. Mar. Fresh. 25: 187–199. DOI: https://doi.org/10.1080/00288330.1991.9516470

    Article  Google Scholar 

  • Korsu K. 2004. Response of benthic invertebrates to disturbance from stream restoration: the importance of bryophytes. Hydrobiologia 523: 37–45. DOI: https://doi.org/10.1023/B:HYDR.0000033086.09499.86

    Article  Google Scholar 

  • Kubosova K., Brabec K., Jarkovsky J. & Syrovatka, V. 2010. Selection of indicative taxa for river habitats: a case study on benthic macroinvertebrates using indicator species analysis and the random forest methods. Hydrobiologia 651: 101–114. DOI: https://doi.org/10.1007/s10750-010-0280-1

    Article  Google Scholar 

  • Lenat D.R. & Penrose D.P. 1996. History of the EPT taxa richness metric. Bull. N. Am. Benthol. Soc. 13: 305–306.

    Google Scholar 

  • Lindegaard C. & Thorup J. 1975. The invertebrate fauna of the moss carpet in the Danish spring Ravnkilde and its seasonal, vertical, and horizontal distribution. Arch. Hydrobiol. 75: 109–139.

    Google Scholar 

  • Logan P. & Brooker M.P. 1983. The macroinvertebrate faunas of riffles and pools. Wat. Res. 17: 263–270. DOI: https://doi.org/10.1016/0043-1354(83)90179-3

    Article  Google Scholar 

  • Louhi P., Mykrä H., Paavola R., Huusko A., Vehanen T., Mäki-Petäys A. & Muotka T. 2011. Twenty years of stream restoration in Finland: little response by benthic macroinvertebrate communities. Ecol. Appl. 21: 1950–1961. DOI: https://doi.org/10.1890/10-0591.1

    Article  PubMed  Google Scholar 

  • McElhone M.C. & Davies R.W. 1983. The influence of rock surface area on the microdistribution and sampling of attached riffle dwelling Trichoptera in Hartley Creek, Alberta. Can. J. Zool. 61: 2300–2304. DOI: https://doi.org/10.1139/z83-302

    Article  Google Scholar 

  • Mutz M. 2000. Influence of woody debris on flow patterns and channel morphology in a low energy, sand-bed stream reach. Int. Rev. Hydrobiol. 85: 107–121. DOI: https://doi.org/10.1002/(SICI)1522-2632(200003)85:1<107::AID-IROH107>3.0.CO;2-L

    Article  Google Scholar 

  • O’Connor N.A. 1992. Quantification of submerged wood in lowland Australian stream system. Freshwater Biol. 27: 387–395. DOI: https://doi.org/10.1111/j.1365-2427.1992.tb00548.x

    Article  Google Scholar 

  • Payne R., Murray D., Harding S., Baird D. & Soutar D. 2009. GenStat for Windows, 12th Edition Introduction. VSN International Ltd: Hemel Hempstead, UK, 256 pp.

    Google Scholar 

  • Schröder M., Kiesel J., Schattmann A., Jahnige S.C., Lorenz A.W., Kramm S., Keizer-Vlek H., Rolauffs P., Graf W., Leitner P. & Hering D. 2013. Substratum associations of benthic invertebrates in lowland and mountain streams. Ecol. Indic. 30: 178–189. DOI: https://doi.org/10.1016/j.ecolind.2013.02.012

    Article  Google Scholar 

  • Skuja A. 2011. Microhabitat preference of caddisfly (Trichoptera) communities in a mediumsized lowland stream in Latvia. Zoosymposia 5: 425–433. DOI: https://doi.org/10.11646/zoosymposia.5.1.36

    Google Scholar 

  • Springe G., Sandin L., Briede A. & Skuja A. 2006. Biological quality metrics: their variability and appropriate scale for assessing streams. Hydrobiologia 566 (1): 153–172. DOI: https://doi.org/10.1007/s10750-006-0099-y

    Article  Google Scholar 

  • Šporka F., Pastuchová Z., Hamerlík L., Dobiašová M. & Beracko P. 2009. Assessment of running waters (Slovakia) using benthic macroinvertebrates derivation of ecological quality classes with respect to altitudinal gradients. Biologia 64: 1196–1205. DOI: https://doi.org/10.2478/s11756-009-0201-9

    Article  Google Scholar 

  • Šporka F., Vlek H.E., Bulánková E. & Krno I. 2006. Influence of seasonal variation on bioassessment of streams using macroinvertebrates, pp. 543–555. DOI: https://doi.org/10.1007/978-1-4020-5493-8_36. In: Furse M.T., Hering D.K., Vrabec K., Buffagni A., Sandin L. & Verdonschot P.F.M. (eds), The Ecological Status of European Rivers: Evaluation and Intercalibration of Assessment Methods, Hydrobiologia 566 Series title: Developments in Hydrobiology Vol. 188, Springer Netherlands, 555 pp. ISBN: 978-1-4020-5160-9

    Article  Google Scholar 

  • Vandewalle M., de Bello F., Berg M.P., Bolger T., Dolédec S., Dubs F., Feld C.K., Harrington R., Harrison P.A., Lavorel S., da Silva P.M,. Moretti M., Niemelä J., Santos P., Sattler T., Sousa J.P., Sykes M.T., Vanbergen A.J. & Woodcock B.A. 2010. Functional traits as indicators of biodiversity response to land use changes across ecosystems and organisms. Biodivers. Conserv. 19: 2921–2947. DOI: https://doi.org/10.1007/s10531-010-9798-9

    Article  Google Scholar 

  • Verdonschot R.C.M., Kail J., McKie B.G. & Verdonschot P.F.M. 2016. The role of benthic microhabitats in determining the effects of hydromorphological river restoration on macroin-vertebrates. Hydrobiologia 769: 55–66. DOI: https://doi.org/10.1007/s10750-015-2575-8

    Article  Google Scholar 

  • Warmke S. & Hering D. 2000. Composition, microdistribution and food of the macroinvertebrate fauna inhabiting wood in low-order mountain streams in Central Europe. Int. Rev. Hydrobiol. 85: 67–78. DOI: https://doi.org/10.1002/(SICI)1522-2632(200003)85:1<67::AID-IROH67>3.0.CO;2-7

    Article  Google Scholar 

  • Williams D.D. 1980. Some relationships between stream benthos and substrate heterogenity. Limnol. Oceanogr. 25: 166–172. DOI: https://doi.org/10.4319/lo.1980.25.1.0166

    Article  Google Scholar 

  • Wood P. 1998. Reach-scale mesohabitat variations in a small chalk stream under low flow conditions, pp. 31–38. In: Bretschko G. & Helešic J. (eds), Advances in River Bottom Ecology, Backhuys Publishers, Leiden, the Netherlands, 344 pp. ISBN: 9073348870

    Google Scholar 

  • Yamamuro A.M. & Lamberti G.A. 2007. Influence of organic matter on invertebrate colonization of sand substrata in a northern Michigan stream. J. North Am. Benthol. Soc. 26: 244–252. DOI: https://doi.org/10.1899/0887-3593(2007)26[244:IOOMOI]2.0.CO;2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Kalaninová.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalaninová, D., Krno, I., Hamerlík, L. et al. Bioassessment of streams based on macroinvertebrates — can sampling of some substrate types be excluded?. Biologia 72, 431–444 (2017). https://doi.org/10.1515/biolog-2017-0049

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2017-0049

Key words

Navigation