Skip to main content
Log in

Effects of stress activated protein kinases on the expression of EST3 gene that encodes telomerase subunit in Saccharomyces cerevisiae

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The EST3 gene of Saccharomyces cerevisiae encodes one of the essential subunits of telomerase enzyme. Expression of the EST3 gene is regulated at the translation level by +1 programmed ribosomal frameshift (PRF). It is known that physiological stress affects telomere length. In this study, we have investigated the effects of different types of stresses and stress activated protein kinases on the frameshift rate in EST3 gene. PRF rate of EST3 gene was measured as 13% in the normal growth conditions in the wild type cells. But, the PRF rate of EST3 in the wild type strain grown in glucose limited conditions decreased more than 6-fold. Contrary to glucose limitation, osmotic stress increased frameshift rate from 13% to 25%. Amino acid starvation and boron stress also activate PRF rate by 2-fold in EST3 in a Gcn2 dependent manner. When the PRF rate was analysed in gcn2 and snf1 mutants, frame shift rate of EST3 was approximately 6% in normal growth conditions. It seems that the basal level expression of EST3 is highly dependent on the Gcn2 kinase complex, indicating that Gcn2 might have a significant function in connecting the stress signals to biosynthesis of the full-length Est3 peptide. This regulation might connect the biosynthesis of functional telomerase and telomere replications to cell physiology through stress activated protein kinases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

3-AT:

3-amino 1,2,4 triazole

ASC1:

absence of growth suppressor of cypl

EST:

ever shorter telomer

eEF:

elongation factor

FF:

frame fusion

FS:

frameshift

GCN:

general control non-derepressed

HOG:

high osmolarity glycerol

MAPK:

mitogen activated kinase

ONPG:

2-nitrophenyl β-d-galactopyranoside

PRF:

programmed ribosomal frameshift

RCK:

radiation sensitivity complementing kinase

SAPK:

stress activated protein kinase

SDS:

sodium dodecyl sulphate

SNF:

sucrose non-fermenting

STM1:

suppressor of ToM1

TLC1:

telomerase component 1

Ty3:

transposon yeast-3

References

  • Advani V.M., Belew A.T. & Dinman J.D. 2013. Yeast telomere maintenance is globally controlled by programmed ribosomal frameshifting and the nonsense-mediated mRNA decay pathway. Translation 1: e24418.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ben-Shem A., de Loubresse N.G. Melnikov S. Jenner L., Yusupova G. & Yusupov M. 2011. The structure of the eukaryotic ribosome at 3.0 Å resolution. Science 334: 1524–1529.

    Article  CAS  PubMed  Google Scholar 

  • Castilho B.A., Shanmugam R., Silva R.C., Ramesh R., Himme B.M. & Sattlegger E. 2014. Keeping the eIF2 alpha kinase Gcn2 in check. Biochim. Biophys. Acta 1843: 1948–1968.

    Article  CAS  PubMed  Google Scholar 

  • Cherkasova V., Qui H. & Hinnebusch A.G. 2010. Snf1 promotes phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2 by activating Gcn2 and inhibiting phosphatases Glc7 and Sit4. Mol. Cell. Biol. 30: 2862–2873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Nadal E. & Posas F. 2010. Multilayered control of gene expression by stress-activated protein kinases. EMBO J. 29: 4–13.

    Article  PubMed  CAS  Google Scholar 

  • Duch A., de Nadal E. & Posas F. 2012. The p38 and Hog1 SAPKs control cell cycle progression in response to environmental stresses. FEBS Lett. 586: 2925–2931.

    Article  CAS  PubMed  Google Scholar 

  • Engelberg D., Perlman R. & Levitzki A. 2014. Transmembrane signaling in Saccharomyces cerevisiae as a model for signaling in metazoans: state of the art after 25 years. Cell. Signal. 26: 2865–2878.

    Article  CAS  PubMed  Google Scholar 

  • Farabaugh P.J. & Vimaladithan A. 1998. Effect of frameshift-inducing mutants of elongation factor 1α on programmed +1 frameshifting in yeast. RNA 4: 38–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Barrio M., Dong J., Ufano S. & Hinnebusch A.G. 2000. Association of GCN1-GCN20 regulatory complex with the N-terminus of eIF2alpha kinase GCN2 is required for GCN2 activation. EMBO J. 19: 1887–1899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guarente L. 1983. Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast. Methods Enzymol. 101: 181–191.

    Article  CAS  PubMed  Google Scholar 

  • Harari Y. & Kupiec M. 2014. Genome-wide studies of telomere biology in budding yeast. Microbial Cell 1: 70–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hedbacker K. & Carlson M. 2008. SNF1/AMPK pathways in yeast. Front. Biosci. 13: 2408–2420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong S.P. & Carlson M. 2007. Regulation of snf1 protein kinase in response to environmental stress. J. Biol. Chem. 282: 16838–16845.

    Article  CAS  PubMed  Google Scholar 

  • Kepinska M., Szyller J. & Milnerowicz H. 2015. The influence of oxidative stress induced by iron on telomere length. Environ. Toxicol. Pharmacol. 40: 931–935.

    Article  CAS  PubMed  Google Scholar 

  • Krogan N.J., Cagney G., Yu H., Zhong G., Guo X., Ignatchenko A., Li J., et al. 2006. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440: 637–643.

    Article  CAS  PubMed  Google Scholar 

  • Kupiec M. & Weisman R. 2012. TOR links starvation responses to telomere length maintenance. Cell Cycle 11: 2268–2271.

    Article  CAS  PubMed  Google Scholar 

  • Lawrence C.L., Botting C.H., Antrobus R. & Coote P.J. 2004. Evidence of a new role for the high-osmolarity glycerol mitogen-activated protein kinase pathway in yeast: regulating adaptation to citric acid stress. Mol. Cell. Biol. 24: 3307–3323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao X.B., Clare J.J. & Farabaugh P.J. 1987. The upstream activation site of a Ty2 element of yeast is necessary but not sufficient to promote maximal transcription of the element. Proc. Natl. Acad. Sci. USA 84: 8520–8524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowry O.H., Rosebrough N.J., Farr A.L. & Randal R.J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275.

    CAS  PubMed  Google Scholar 

  • Lundblad V. & Szostak J.W. 1989. A mutant with a defect in telomere elongation leads to senescence in yeast. Cell 57: 633–643.

    Article  CAS  PubMed  Google Scholar 

  • Marton, M.J., Vazquez de Aldana, C.R., Qiu H., Chakraburtty K. & Hinnebusch A.G. 1997. Evidence that GCN1 and GCN20, translational regulators of GCN4, function on elongating ri-bosomes in activation of eIF2a kinase GCN2. Mol. Cell. Biol. 17: 4474–4489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris D.K. & Lundblad V. 1997. Programmed translational frameshifting in a gene required for yeast telomere replication. Curr. Biol. 7: 969–976.

    Article  CAS  PubMed  Google Scholar 

  • Nilsson J., Sengupta J., Frank J. & Nissen P. 2004. Regulation of eukaryotic translation by the RACK1 protein: a platform for signalling molecules on the ribosome EMBO Reports 5: 1137–1141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ptacek J., Devgan G., Michaud G., Zhu H., Zhu X., Fasolo J., Guo H., et al. 2005. Global analysis of protein phosphorylation in yeast. Nature 438: 679–684.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Hernandez C.J., Sanchez-Perez I., Gil-Mascarell R., Rodríguez-Afonso A., Torres A., Perona R. & Murguia J.R. 2003. The immunosuppressant FK506 uncovers a positive regulatory cross-talk between the Hog1p and Gcn2p pathways. J. Biol. Chem. 278: 33887–33895.

    Article  CAS  PubMed  Google Scholar 

  • Romano G.H., Harari Y., Yehuda T., Podhorzer A., Rubinstein L., Shamir R., Gottlieb A., Silberberg Y., Peer D,. Ruppin E., Sharan R. & Kupiec M. 2013. Environmental stresses disrupt telomere length homeostasis. PLoS Genet. 9: e1003721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rose M.D., Winston F. & Heiter P. 1990. Methods in Yeast Genetics–A Laboratory Course Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.

    Google Scholar 

  • Saito H. & Posas F. 2012. Response to hyperosmotic stress. Genetics 192: 289–318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sattlegger E. & Hinnebusch A.G. 2005. Polyribosome binding by GCN1 is required for full activation of eIF2a kinase GCN2 during amino acid starvation. J. Biol. Chem. 280: 16514–16521.

    Article  CAS  PubMed  Google Scholar 

  • Shashkova S., Welkenhuysen N. & Hohmann S. 2015. Molecular communication: crosstalk between the Snf1 and other signaling pathways. FEMS Yeast Res. 15: fov026.

    Article  PubMed  CAS  Google Scholar 

  • Sundararajan A., Michaud W.A., Qian Q., Stahl G. & Farabaugh P.J. 1999. Near-cognate peptidyl-tRNAs promote +1 programmed translational frameshifting in yeast. Mol. Cell 4: 1005–1015.

    Article  CAS  PubMed  Google Scholar 

  • Swaney D.L., Beltrao P., Starita L., Guo A., Rush J., Fields S., Krogan N.J. & Villen J. 2013. Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nat. Methods 10: 676–682.

    Article  CAS  PubMed  Google Scholar 

  • Taggart A.K.P. & Zakian V.A. 2003. Telomerase: what are the Est proteins doing? Curr. Opin. Cell Biol. 15: 275–280.

    Article  CAS  PubMed  Google Scholar 

  • Taliaferro D. & Farabaugh P.J. 2007. An mRNA sequence derived from the yeast EST3 gene stimulates programmed +1 translational frameshifting. RNA 13: 606–613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teige M., Scheikl E., Reiser V., Ruis H. & Ammerer G. 2001. Rck2, a member of the calmodulin-protein kinase family, links protein synthesis to high osmolarity MAP kinase signaling in budding yeast. Proc. Natl. Acad. Sci. USA 98: 5625–5630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuzon C.T., Wu Y., Chan A. & Zakian V.A. 2011. The Saccharomyces cerevisiae telomerase subunit Est3 binds telomeres in a cell cycle- and Est1-dependent manner and interacts directly with Est1 in vitro. PLoS Genet. 7: e1002060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Türkel S., Kaplan G. & Farabaugh P.J. 2011. Glucose signalling pathway controls the programmed ribosomal frameshift efficiency in retroviral-like element Ty3 in Saccharomyces cerevisiae. Yeast 28: 799–808.

    Article  PubMed  CAS  Google Scholar 

  • Ungar L., Yosef N., Sela Y., Shara R., Ruppin E. & Kupiec M. 2009. A genome-wide screen for essential yeast genes that affect telomere lenght maintenance. Nucleic Acids Res. 37: 3840–3849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uluisik I., Kaya A., Fomenko D.E., Karakaya H.C., Carlson B.A., Gladyshev V.N. & Koc A. 2011. Boron stress activates the general amino acid control mechanism and inhibits protein synthesis. PLoS One 6: e27772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valerius O., Kleinschmidt M., Rachfall N., Schulze F., Lopez Marin S., Hoppert M., Streckfuss-Bömeke K., Fischer C. & Braus G.H. 2007. The Saccharomyces homolog of mammalian RACK1, Cpc2/Asc1p, is required for FLO11-dependent adhesive growth and dimorphism. Mol. Cell. Proteomics 6: 1968–1979.

    Article  CAS  PubMed  Google Scholar 

  • van Dyke M.W., Nelson L.D., Weilbaecher R.G. & Mehta D.V. 2004. Stm1p, a G4 quadruplex and purine motif triplex nucleic ccid-binding protein, interacts with ribosomes and subtelomeric Y’ DNA in Saccharomyces cerevisiae. J. Biol. Chem. 279: 24323–24333.

    Article  PubMed  CAS  Google Scholar 

  • van Dyke N., Baby J. & Van Dyke M.W. 2006. Stm1p, a ribosome-associated protein, is important for protein synthesis in Saccharomyces cerevisiae under nutritional stress conditions. J. Mol. Biol. 358: 1023–1031.

    Article  PubMed  CAS  Google Scholar 

  • Visweswaraiah J., Lageix S., Castilho B.A., Izotova L., Kinzy T.G., Hinnebusch A.G. & Sattlegger E. 2011. Evidence that eukaryotic translation elongation factor 1A (eEF1A) binds the Gcn2 protein C terminus and inhibits Gcn2 activity. J. Biol. Chem. 286: 36568–36579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warringer J., Hult M., Regot S., Posas F. & Sunnerhagen P. 2010. The HOG pathway dictates the short-term translational response after hyperosmotic shock. Mol. Biol. Cell 21: 3080–3092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wek R.C. 1994. eIF-2 kinases: regulators of general and gene-specific translation initiation. Trends Biochem. Sci. 19: 491–496.

    Article  CAS  PubMed  Google Scholar 

  • Wellinger R.J. & Zakian V.A. 2012. Everything you ever wanted to know about Saccharomyces cerevisiae telomeres: beginning to end. Genetics 191: 1073–1105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf A.S. & Grayhack E.J. 2015. Asc1, homolog of human RACK1, prevents frameshifting in yeast by ribosomes stalled at CGA codon repeats. RNA 21: 935–945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zurita-Martinez S.A. & Cardenas M.E. 2005. Tor and cyclic AMP-protein kinase A: two parallel pathways regulating expression of genes required for cell growth. Eukaryot. Cell 4: 63–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sezai Türkel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Türkel, S., Sarica, S. Effects of stress activated protein kinases on the expression of EST3 gene that encodes telomerase subunit in Saccharomyces cerevisiae. Biologia 72, 252–258 (2017). https://doi.org/10.1515/biolog-2017-0039

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2017-0039

Key words

Navigation