Skip to main content
Log in

Yield improvement of the king oyster mushroom, Pleurotus eryngii, by transformation of its cellulase gene

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

A plasmid pCAMBIA1301 containing Pleurotus eryngii cellulase gene (PEcbh), under the control of Lentinus edodes glyceraldehyde-3-phosphate dehydrogenase (LEgpd) promoter, was constructed and used as an expression vector. The vector was transformed into the tissue of P. eryngii using Agrobacterium tumefaciens-mediated transformation (ATMT) method and 4 transformants (PET1-4) were obtained. The positive transformants were confirmed by cultivation in media containing hygromycin and by PCR amplification of hygromycin B resistance-LEgpd promoter gene fragment. Unpredicted, cellulase specific activities of the transformants were not higher than those of the wild type. Mushroom cultivation was performed in the laboratory and the results revealed that the average biological efficiency of PET4 was significantly 1.52 times higher than those of the wild type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ATMT:

Agrobacterium tumefaciens-mediated transformation

BE:

biological efficiency

CMC:

carboxymethylcellulose

gus:

β-glucuronidase

hph:

hygromycin B resistance

LEgpd:

Lentinus edodes glyceraldehyde-3-phosphate dehydrogenase

PDA:

potato dextrose agar

PEcbh:

Pleurotus eryngii cellulase gene

PET1-4:

Pleurotus eryngii transformant strains 1-4

References

  • Chen S.Y., Ho K.J., Hsieh Y.J., Wang L.T. & Mau J.L. 2012. Contents of lovastatin, γ-aminobutyric acid and ergothioneine in mushroom fruiting bodies and mycelia. LWT Food Sci. Technol. 47: 274–278.

    Article  CAS  Google Scholar 

  • Chen X., Stone M., Schlagnhaufer C. & Romaine C.P. 2000. A fruiting body tissue method for efficient Agrobacterium-mediated transformation of Agaricus bisporus. Appl. Environ. Microbiol. 66: 4510–4513.

    Article  CAS  Google Scholar 

  • Cho J.H., Lee S.E., ChangW.B. & Cha J.S. 2006. Agrobacterium-mediated transformation of the winter mushroom, Flammulina velutipes. Korean J. Mycol. 34: 104–107.

    CAS  Google Scholar 

  • Chukeatirote E., Maharachchikumbura S.S.N., Wongkham S., Sysouphanthong P., Phookamsak R. & Hyde K.D. 2012. Cloning and sequence analysis of the cellobiohydrolase I genes from some basidiomycetes. Korean J. Mycol. 40: 107–110.

    CAS  Google Scholar 

  • Febriki-Ourang S., Jalali-Javaran M., Mohammadi-Goltapeh E., Alizadeh H. & Honari H. 2013. Optimization of Agrobacterium-mediated transformation in oyster mushroom (Pleurotus ostreatus) by vector containing human pro-insulin gene. Iranian J. Genet. Plant Breed. 2: 1–9.

    Google Scholar 

  • Irwin D., Shin D.H., Zhang S., Barr B.K., Sakon J., Karplus P.A. & Wilson D.B. 1998. Roles of the catalytic domain and two cellulose binding domains of Thermomonospora fusca E4 in cellulose hydrolysis. J. Bacteriol. 180: 1709–1714.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S., Sapkota K., Choi B.S. & Kim S.J. 2010. Expression of human growth hormone gene in Pleurotus eryngii. Cent. Eur. J. Biol. 5: 791–799.

    CAS  Google Scholar 

  • Kurt S. & Buyukalaca S. 2010. Yield performances and changes in enzyme activities of Pleurotus spp. (P. ostreatus and P. sajorcaju) cultivated on different agricultural wastes. Bioresour. Technol. 101: 3164–3169.

    Article  CAS  Google Scholar 

  • Lee C.C., Wong D.W.S. & Robertson G.H. 2001. Cloning and characterization of two cellulase genes from Lentinula edodes. FEMS Microbiol. Lett. 205: 355–360.

    Article  CAS  Google Scholar 

  • Michielse C.B., Hooykaas P.J.J., Hondel C.A.M.J.J. & Ram A.F.J. 2005. Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr. Genet. 48: 1–17.

    Article  CAS  Google Scholar 

  • Michielse C.B., Hooykaas P.J.J., Hondel C.A.M.J.J. & Ram A.F.J. 2008. Agrobacterium-mediated transformation of the filamentous fungus Aspergillus awamori. Nat. Protoc. 3: 1671–1678.

    Article  Google Scholar 

  • Mikosch T.S.P., Lavrijssen B., Sonnenberg A.S.M. & Griensven L.J.L.D. 2001. Transformation of the cultivated mushroom Agaricus bisporus (Lange) using T-DNA from Agrobacterium tumefaciens. Curr. Genet. 39: 35–39.

    Article  CAS  Google Scholar 

  • Moonmoon M., Uddin M.N., Ahmed S., Shelly N.J. & Khan M.A. 2010. Cultivation of different strains of king oyster mushroom (Pleurotus eryngii) on saw dust and rice straw in Bangladesh. Saudi J. Biol. Sci. 17: 341–345.

    Article  Google Scholar 

  • Okamoto T., Yamada M., Sekiya S., Okuhara T., Taguchi G., Inatomi S. & Shimosaka M. 2010. Agrobacterium tumefaciens-mediated transformation of the vegetative dikaryotic mycelium of the cultivated mushroom Flammulina velutipes. Biosci. Biotechnol. Biochem. 74: 2327–2329.

    Article  CAS  Google Scholar 

  • Rodriguez Estrada A.E., Jimenez-Gasco M.M. & Royse D.J. 2009. Improvement of yield of Pleurotus eryngii var. eryngii by substrate supplementation and use of a casing overlay. Bioresour. Technol. 100: 5270–5276.

    Article  CAS  Google Scholar 

  • Rodriguez Estrada A.E. & Royse D.J. 2007. Yield, size and bacterial blotch resistance of Pleurotus eryngii grown on cottonseed hulls/oak sawdust supplemented with manganese, copper and whole ground soybean. Bioresour. Technol. 98: 1898–1906.

    Article  CAS  Google Scholar 

  • Romruen U. & Bangyeekhun E. 2016. Cloning and expression of the cellulase gene from the king oyster mushroom, Pleurotus eryngii. Silpakorn U. Sci. Technol. J. 10: 22–30.

    Google Scholar 

  • Stamets P. 1993. Growing Gourmet and Medicinal Mushrooms. Ten Speed Press, Berkeley. 574 pp.

    Google Scholar 

  • Wang H. & Ng T.B. 2004. Eryngin, a novel antifungal peptide from fruiting bodies of the edible mushroom Pleurotus eryngii. Peptides 25: 1–5.

    Article  Google Scholar 

  • Wang J., Guo L., Zhang K., Wu Q. & Lin J. 2008. Highly efficient Agrobacterium-mediated transformation of Volvariella volvacea. Bioresour. Technol. 99: 8524–8527.

    Article  CAS  Google Scholar 

  • Weigel D. & Glazebrook J. 2006. Transformation of Agrobacterium using the freeze-thaw method. CSH Protoc. 7: 3.

    Google Scholar 

  • Zhao F.Y., Lin J.F., Zeng X.L., Guo L.Q., Wang Y.H. & You L.R. 2010. Improvement in fruiting body yield by introduction of the Ampullaria crossean multi-functional cellulase gene into Volvariella volvacea. Bioresour. Technol. 101: 6482–6486.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eakaphun Bangyeekhun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romruen, U., Bangyeekhun, E. Yield improvement of the king oyster mushroom, Pleurotus eryngii, by transformation of its cellulase gene. Biologia 72, 140–144 (2017). https://doi.org/10.1515/biolog-2017-0023

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2017-0023

Key words

Navigation