Skip to main content
Log in

An application of genetics-chemicals constituents to the relatedness of three Euphorbia species

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Genetics and chemicals relatedness among three Euphorbia species (Euphorbia prostrata Aiton, Euphorbia peplus L. and Euphorbia terracina L.) were analysed by RAPD, ISSR markers and GC-MS technique. RAPD profiling pattern revealed that E. peplus and E. terracina in one cluster with similarity value (44.37%) while the lowest value (29.14%) between E. prostrata and E. terracina. ISSR profiling pattern revealed that E. prostrata and E. terracina in one cluster with similarity value (46.75%) and the lowest similarity value (37.87%) between E. prostrata and E. peplus. The sum results of RAPD and ISSR data revealed that E. peplus and E. terracina in one cluster with similarity value (44.69%) while the lowest value (36.88%) between E. prostrata and E. peplus. Sixty-eight chemicals pattern revealed that E. prostrata and E. peplus in one cluster with similarity value (39.71%) while the lowest value (25.0%) between E. prostrata and E. terracina. Super tree (RAPD, ISSR and phytocomponents) revealed that E. peplus and E. terracina in one cluster with similarity value (43.04%) while the lowest value (36.08%) between E. terracina and E. prostrata. In conclusion, biosystematics tools including biomarkers and chemical compounds can be applied to investigate relatedness of Euphorbia species and probably to other plant taxa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

RAPD:

Random amplified polymorphic DNA

ISSR:

Inter-simple sequence repeats markers

GC-MS:

Gas chromatography-mass spectrometry

References

  • Ahmad N., Munir I., Khan I. A. & Ali W. 2007. PCR based genetic diversity of rapeseed germplasm using RAPD markers. Biotechnology 6: 334–338.

    Article  CAS  Google Scholar 

  • Aljibouri A.M., Yakoub Zokian S.A. & Almusawi AH. 2013. RAPD-PCR analysis of some species of Euphorbia grown in University of Baghdad Campus in Jadiriyah. Afr. J. Biotechnol. 12: 6809–6816.

    CAS  Google Scholar 

  • APG II. 2003. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot. J. Linn. Soc. 141: 399–436.

    Article  Google Scholar 

  • APG III. 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc. 161: 105–121.

    Article  Google Scholar 

  • Behera T.K., Singh A.K. & Staub J.E. 2008. Comparative analysis of genetic diversity in Indian bitter gourd (Momordica charantia L.) using RAPD and ISSR markers for developing crop improvement strategies. Sci. Hortic. 115: 209–217.

    Article  CAS  Google Scholar 

  • Bruyns P.V., Mapaya R.J. & Hedderson T. 2006. A new subgeneric classification for Euphorbia (Euphorbiaceae) in southern Africa based on ITS and psbA-trnH sequence data. Taxon 55: 397–420.

    Article  Google Scholar 

  • Chowda-Reddy R.V., Kirankumar M., Seal S.E., Muniyappa V., Girish B.V., Govindappa M.R. & John C. 2012. Bemisia tabaci Phylogenetic Groups in India and the Relative Transmission Efficacy of Tomato leaf curl Bangalore virus by an Indigenous and an Exotic Population. J. Integr. Agric. 11: 235–248.

    Article  Google Scholar 

  • Djamila K., Ammar B. & Med M. 2012. Use of the ISSR markers for the study of genetic polymorphism of the Pistachio fruit Pistacia vera L. in Algeria. Afr. J. Biotechnol. 11: 7354–7360.

    Google Scholar 

  • Doyle J.J. & Doyle J.L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11–15.

    Google Scholar 

  • Ezhilan B.P. & Neelamegam R. 2012. GC-MS analysis of phytocomponents in the ethanol extract of Polygonum chinense L. Pharmacogn. Res. 4: 11–14.

    CAS  Google Scholar 

  • Goodwin I.D., Aitken E.A.B. & Smith L.W. 1997. Application of intersimple sequence repeat (ISSR) markers to plant genetics. Electrophoresis 18: 1524–1528.

    Article  Google Scholar 

  • Govaerts R., Fordin D. & Radcliffe-Smith A. 2000. World Checklist and Bibliography of Euphorbiaceae. The Royal Botanic Gardens Kew.

    Google Scholar 

  • Haevermans T. & Labat J.N.L. 2004. A synoptic revision of the Malagasy endemic Euphorbia pervilleana group. Syst. Bot. 29: 118–124.

    Article  Google Scholar 

  • Harvey M. & Botha F.C. 1996. Use of PCR-based methodologies for the determination of DNA diversity between Saccharum varieties. Euphytica 89: 257–265.

    Article  CAS  Google Scholar 

  • Horn J.W., van Ee B.W., Morawetz J.J., Riina R., Steinmann V.W., Berry P.E. & Wurdack K.J. 2012. Phylogenetics and the evolution of major structural Wurdack characters in the giant genus Euphorbia L. (Euphorbiaceae). Mol. Phylogene. Evol. 63: 305–326.

    Article  Google Scholar 

  • Manimekalai R., Nagarajan P. & Kumaran P.M. 2006. Comparison of effectiveness of RAPD. ISSR and SSR markers for analysis of coconut (Cocos nucifera L.) germplasm accessions. Eighteenth Annual Congress of the PGIA pp. 16–17.

    Google Scholar 

  • Moustafa M.F.M., Alamri S., Taha T.H. & Alrumman S.A. 2013. In vitro antifungal activity of Argemone ochroleuca sweet latex against some pathogenic fungi. Afr. J. Biotechnol. 12: 1132–1137.

    Google Scholar 

  • Mukherjee A., Sikdar B., Ghosh B., Banerjee A., Ghosh E., Bhattacharya M. & Roy S.C. 2013. RAPD and ISSR analysis of some economically important species varieties and cultivars of the genus Allium (Alliaceae). Turk. J. Bot. 37: 605–618.

    CAS  Google Scholar 

  • Radcliffe-Smith A. 2001. Drypetes Vahl., pp. 50–52. In: Genera Euphorbiacearum. Royal Botanic Gardens Kew, Richmond, UK.

    Google Scholar 

  • Rawashdeh N.Q., Haddad N.I. Al-Ajlouni M.M. & Turk M.A. 2007. Phenotypic diversity of durum wheat (Triticum durum Desf.) from Jordan. Genet. Resour. Crop Evol. 54: 129–138.

    Article  Google Scholar 

  • Richard S. & Peter H. 2007. Community Analysis Package 4.0 Searching for structure in community data in Lymington UK.

    Google Scholar 

  • Park K.R. & Jansen R.K. 2007. A phylogeny of Euphorbieae subtribe Euphorbiinae (Euphorbiaceae) based on molecular data. J. Plant Biol. 50: 644–649.

    Article  CAS  Google Scholar 

  • Paulauskas A., Jodinskienė M., Griciuvienė L ˇZukauskienė., Petraitien Ė E. & Brazauskienė I. 2013. Morphological traits and genetic diversity of differently overwintered oilseed rape (Brassica napus L.) cultivars. ˇZemdirbystė–Agriculture 100: 409–416.

    Article  Google Scholar 

  • Salgueiro L.R., Vila R., Tomas X., Canigueral S., Paiva J., Proenca da Cunha A. & Adzet T. 2000. Chemotaxonomic study on Thymus villosus fromPortugal. Biochem. Sys. Ecol. 28: 471–482.

    Article  CAS  Google Scholar 

  • Singh A.K., Singh M., Singh A.K., Singh R., Kumar S. & Kalloom G. 2006. Genetic diversity within the genus Solanum (Solanaceae) as revealed by RAPD markers. Curr. Sci. 90: 711–716.

    CAS  Google Scholar 

  • Steinmann V.W. & Porter J.M. 2002. Phylogenetic relationships in Euphorbieae (Euphorbiaceae) based on ITS and ndhF sequence data. Ann. Missouri Bot. Gard. 89: 453–490.

    Article  Google Scholar 

  • Thormann C.E., Ferreira M.E., Camargo L.E.A., Tivang J.G. & Osborn T.C. 1994. Comparison of RFLP and RAPD markers to estimating genetic relationships within and among Cruciferous species. Theor. Appl. Genet. 88: 973–80.

    Article  CAS  Google Scholar 

  • Webster G.L. 1994. Synopsis of the genera and suprageneric taxa of Euphorbiaceae. Ann. Mo. Bot. Gard. 81: 33–144.

    Article  Google Scholar 

  • Weier T.E., Stocking C.R., Barbour M.G. & Rost T.L. 1982. Botany an Introduction to Plant Biology. 6th Ed. John Wiley and Sons New York ISBN: 0-471-86840-X.

    Google Scholar 

  • Wurdack K.J., Hoffmann P., Samuel R., Bruijn A., Van Der Bank M. & Chase M.W. 2004. Molecular phylogenetic analysis of Phyllanthaceae (Phyllanthoideae pro parte Euphorbiaceae s.l.) using plastid rbcl dna sequences. Am. J. Bot. 91: 1882–1900.

    Article  CAS  Google Scholar 

  • Wurdack K.J., Hoffmann P. & Chase M.W. 2005. Molecular phylogenetic analysis of uniovulate Euphorbiaceae (Euphorbiaceae s.s.) using plastid rbcL and trnL-F DNA sequences. Am. J. Bot. 92: 1397–1420.

    Article  CAS  Google Scholar 

  • Zietkiewicz E., Rafalski A. & Labuda D. 1994. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20: 176–183.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the King Abdulaziz City for Science and Technology (KACST) for the financial support of this work under grant number (A-I-34-280).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Moustafa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moustafa, M., Mostafa, O., Al-Shahrani, D. et al. An application of genetics-chemicals constituents to the relatedness of three Euphorbia species. Biologia 71, 1240–1249 (2016). https://doi.org/10.1515/biolog-2016-0148

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2016-0148

Key words

Navigation