Skip to main content
Log in

Distinct expression patterns of the GDP dissociation inhibitor protein gene (OsRhoGDI2) from Oryza sativa during development and abiotic stresses

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Guanine nucleotide dissociation inhibitor (GDI) plays an essential role in regulating the forms of Rac/Rop between GDP-bound inactivity and GTP-bound activity in plants. In this paper, we reported a stress-responsive GDI gene (OsRhoGDI2) from rice (Oryza sativa L.). We analyzed the transcript levels of OsRhoGDI2 gene in various tissues, organs, and developmental stages to obtain information about its function. We further researched the expression patterns of OsRhoGDI2 gene in response to abiotic stress signals. qRT-PCR demonstrated that OsRhoGDI2 was distinctly expressed in various plant tissues and organs at different levels. The expression of OsRhoGDI2 was also highly salty and drought inducible, it also moderately responded to Methyl Jasmonate (MeJA), abscisic acid (ABA), and Indole-3-acetic Acid (IAA), treatment but was only slightly affected by 6-Benzylaminopurine (6-BA) and salicylic acid (SA) treatments. Nevertheless, reduced expression conferred hypersensitivity to gibberellin (GA) stress in rice. The promoter of OsRhoGDI2 gene was used to drive β-glucuronidase (GUS) gene expression. Results of GUS histochemical staining showed the tissue-specific expression patterns of OsRhoGDI2, and GUS gene expression in two-week-old transgenic rice seedling exhibited relatively similar patterns under different stresses of the transgenic rice lines. These results provided insights into the characteristics and roles of the OsRhoGDI2 gene during development and strongly suggested that OsRhoGDI2 may play direct or indirect roles in the tolerance to different stresses in rice and may serve as a basis for further functional studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akamatsu A., Wong H., Fujiwara M., Okuda J., Nishide K., Uno K., Imai K., Umemura K., Kawasaki T., Kawano Y. & Shimamoto K. 2013. An OsCEBiP/OsCERK1-OsRacGEF1- OsRac1 module is an essential component of chitin-induced rice immunity. Cell. Host. Microbe. 13: 465–476.

    Article  CAS  PubMed  Google Scholar 

  • Bloch D. & Yalovsky S. 2013. Cell polarity signaling. Curr. Opin. Plant. Biol. 16: 734–742.

    Article  CAS  Google Scholar 

  • Carol R.J., Takeda S., Linstead P., Durrant M.C., Kakesova H., Derbyshire P., Drea S., Zarsky V. & Dolan L. 2005. A RhoGDP dissociation inhibitor spatially regulates growth in root hair cells. Nature 438: 1013–1016.

    Article  CAS  PubMed  Google Scholar 

  • Chen L., Hamada S., Fujiwara M., Zhu T., Thao N.P., Wong H.L., Krishna P., Ueda T., Kaku H., Shibuya N., Kawasaki T. & Shimamoto K. 2010a. The Hop/Sti1-Hsp90 chaperone complex facilitates the maturation and transport of a PAMP receptor in rice innate immunity. Cell. Host. Microbe. 7: 185–196.

    Article  CAS  PubMed  Google Scholar 

  • Chen L., Shiotani K., Togashi T., Miki D., Aoyama M., Wong H.L., Kawasaki T. & Shimamoto K. 2010b. Analysis of the Rac/Rop Small GTPase Family in Rice: expression, subcellular localization and role in disease resistance. Plant Cell Physiol. 51: 585–595.

    Article  CAS  PubMed  Google Scholar 

  • Chen X., Naramoto S., Robert S., Tejos R., Löfke C., Lin D., Yang Z. & Friml J. 2012. ABP1 and ROP6 GTPase signaling regulate clathrinmediated endocytosis in Arabidopsis roots. Curr. Biol. 22: 1326–1332.

    Article  CAS  PubMed  Google Scholar 

  • Dormann P., Kim H., Ott T., Schulze- Lefert P., Trujillo M., Wewer V. & Huckelhoven R. 2014. Cell-autonomous defense, re-organization and trafficking of membranes in plant–microbe interactions. New Phytol. 204: 815–822.

    Article  PubMed  CAS  Google Scholar 

  • Fior S. & Gerola P.D. 2009. Impact of ubiquitous inhibitors on the GUS gene reporter system: evidence from the model plantsArabidopsis, tobacco and rice and correction methods for quantitative assays of transgenic and endogenous GUS. Plant Methods 5: 314–321.

    Article  CAS  Google Scholar 

  • Heo J.B., Yi Y.B. & Bahk J.D. 2011. Rice GDP dissociation inhibitor 3 inhibits OsMAPK2 activity through physical interaction. Biochem. Biophys. Res. Commun. 414: 814–819.

    Article  CAS  PubMed  Google Scholar 

  • Hoefle C., Huesmann C., Schultheiss H., Börnke F., Hensel G., Kumlehn J. & Hückelhoven R. 2011. A barley ROP GTPase activating protein associates with microtubules and regulates entry of the barley powdery mildew fungus into leaf epidermal cells. Plant Cell 23: 2422–2439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofgen R. & Willmitzer L. 1988. Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res. 16: 9877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang J.U., Vernoud V., Szumlanski A., Nielsen E. & Yang Z. 2008. A tip localized RhoGAP controls cell polarity by globally inhibiting Rho GTPase at the cell apex. Curr. Biol. 18: 1907–1916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang J.U., Wu G., Yan A., Lee Y.J., Grierson C.S. & Yang Z.B. 2010. Pollen-tube tip growth requires a balance of lateral propagation and global inhibition of Rho-family GTPase activity. J. Cell. Sci. 123: 340–350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones M.A., Shen J.J., Fu Y., Li H., Yang Z. & Grierson C.S. 2002. The Arabidopsis Rop2 GTPase is a positive regulator of both root hair initiation and tip growth. Plant Cell 14: 763–776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung Y.H., Agrawal G.K., Rakwal R., Kim J.A., Lee M.O., Choi P.G., Kim Y.J., Kim M.J., Shibato J., Kim S.H., Iwahashi H. & Jwa N.S. 2006. Functional characterization of OsRacB GTPase–a potentially negative regulator of basal disease resistance in rice. Plant Physiol. Biochem. 44: 68–77.

    Article  CAS  PubMed  Google Scholar 

  • Kawano Y., Kaneko-Kawano T. & Shimamoto K. 2014a. Rho family GTPase-dependent immunity in plants and animals. Front. Plant Sci. 5: 522–533.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kawano Y., Fujiwara T., Yao A., Housen Y., Hayashi K. & Shimamoto K. 2014b. Palmitoylation-dependent membrane localization of the rice R protein Pit is critical for the activation of the small GTPase OsRac1. J. Biol. Chem. 289: 19079–19088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawano Y. & Shimamoto K 2013. Early signaling network in rice PRR- and R-mediated immunity. Curr. Opin. Plant. Biol. 16: 496–504.

    Article  CAS  PubMed  Google Scholar 

  • Kim S.H., Oikawa T., Kyozuka J., Wong H.L., Umemura K., Kishi-Kaboshi M., Takahashi A., Kawano Y., Kawasaki T. & Shimamoto K. 2012. The bHLH Rac immunity1 (RAI1) is activated by OsRac1 via OsMAPK3 and OsMAPK6 in rice immunity. Plant Cell Physiol. 53: 740–754.

    Article  CAS  PubMed  Google Scholar 

  • Kieffer F., Elmayan T., Rubier S., Simon-Plas F., Dagher M.C. & Blein J.P. 2000. Cloning of Rac and Rho-GDI from tobacco using an heterologous two-hybrid screen. Biochimie 82: 1099–1105.

    Article  CAS  PubMed  Google Scholar 

  • Klahre U., Becker C., Schmitt A.C. & Kost B. 2006. Nt-RhoGDI2 regulates Rac/Rop signaling and polar cell growth in tobacco pollen tubes. Plant J. 46: 1018–1031.

    Article  CAS  PubMed  Google Scholar 

  • Klahre U. & Kost B. 2006. Tobacco RhoGTPase activating protein1 spatially restricts signaling of RAC/Rop to the apex of pollen tubes. Plant Cell 18: 3033–3046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemichez E., Wu Y., Sanchez J.P., Mettouchi A., Mathur J. & Chua N.H. 2001. Inactivation of AtRac1 by abscisic acid is essential for stomatal closure. Genes Dev. 15: 1808–1816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lescot M., De’hais P., Thijs G., Marchal K., Moreau Y., Van de Peer Y., Rouz P. & Rombauts S. 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 30: 325–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Shen J.J., Zheng Z.L., Lin Y.K. & Yang Z.B. 2001. The Rop GTPase switch controls multiple developmental processes inArabidopsis. Plant Physiol. 126: 670–684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z., Kang J., Sui N. & Liu D. 2012. ROP11 GTPase is a negative regulator of multiple ABA responses in Arabidopsis. J. Integr. Plant Biol. 54: 169–179.

    Article  CAS  PubMed  Google Scholar 

  • Liang W.H., Tang C.R. & Wu N.H. 2004. Isolation and characterization of two GDP dissociation inhibitor genes from Oryza sativa L. Chin. J. Biochem. Mol. Biol. 20: 785–791.

    CAS  Google Scholar 

  • Lieberherr D., Thao N.P., Nakashima A., Umemura K., Kawasaki T. & Shimamoto K. 2005. A sphingolipid elicitor-inducible mitogen-activated protein kinase is regulated by the small GTPase OsRac1 and heterotrimeric G-protein in rice. Plant Physiol. 138: 1644–1652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin D., Nagawa S., Chen J., Cao L., Chen X., Xu T., Li H., Dhonukshe P., Yamamuro C., Friml J., Scheres B., Fu Y. & Yang Z. 2012. A ROP GTPase-dependent auxin signaling pathway regulates the subcellular distribution of PIN2 in Arabidopsis roots. Curr. Biol. 22: 1319–1325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak K.J. & Schmittgen T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) method. Methods 25: 402–408.

    CAS  PubMed  Google Scholar 

  • Moller S.G. & Chua N.H. 1999. Interactions and intersections of plant signaling pathways. J. Mol. Biol. 293: 219–234.

    Article  CAS  PubMed  Google Scholar 

  • Mucha E., Fricke I., Schaefer A., Wittinghofer A. & Berken A. 2011. Rho proteins of plants Functional cycle and regulation of cytoskeletal dynamics. Eur. J. Cell. Biol. 90: 934–943.

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K., Fujita Y., Katsura K., Maruyama K., Narusaka Y., Seki M., Shinozaki K. & Yamaguchi-Shinozaki K. 2006. Transcriptional regulation of ABI3- and ABA-responsive genes including RD29B and RD29A in seeds, germinating embryos, and seedlings of Arabidopsis. Plant Mol. Biol. 60: 51–68.

    Article  CAS  PubMed  Google Scholar 

  • Nibau C., Tao L., Levasseur K., Wu H.M. & Cheung A.Y. 2013. The Arabidopsis small GTPase AtRAC7/ROP9 is a modulator of auxin and abscisic acid signaling. J. Exp. Bot. 64: 3425–3437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ota T., Maeda M., Okamoto M. & Tatsuka M. 2015. Positive regulation of Rho GTPase activity by RhoGDIs as a result of their direct interaction with GAPs. BMC Syst. Biol. 9: 3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pathuri I.P., Zellerhoff N., Schaffrath U., Hensel G., Kumlehn J., Kogel K.H., Eichmann R. & Hückelhoven R. 2008. Constitutively activated barley ROPs modulate epidermal cell size, defense reactions and interactions with fungal leaf pathogens. Plant Cell Rep. 27: 1877–1887.

    Article  CAS  PubMed  Google Scholar 

  • Poraty-Gavra L., Zimmermann P., Haigis S., Bednarek P., Hazak O., Stelmakh O.R., Sadot E., Schulze-Lefert P., Gruissem W. & Yalovsky S. 2013. The Arabidopsis Rho of plants GTPase AtROP6 functions in developmental and pathogen response pathways. Plant Physiol. 161: 1172–1188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potikha T.S., Collins C.C., Johnson D.I., Delmer D.P. & Levine A. 1999. The involvement of hydrogen peroxide in the differentiation of secondary walls in cotton fibers. Plant Physiol. 119: 849–858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rech P., Grima-Pettenati J. & Jauneau A. 2003. Fluorescence microscopy: a powerful technique to detect low GUS activity in vascular tissues. Plant J. 33: 205–209.

    Article  CAS  PubMed  Google Scholar 

  • Rogers S.O. & Bendich A.J. 1985. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol. Biol. 5: 69–76.

    Article  CAS  PubMed  Google Scholar 

  • Schultheiss H., Hensel G., Imani J., Broeders S., Sonnewald U., Kogel K.H., Kumlehn J. & Hückelhoven R. 2005. Ectopic expression of constitutively activated RACB in barley enhances susceptibility to powdery mildew and abiotic stress. Plant Physiol. 139: 353–362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun H., Huang X., Xu X., Lan H., Huang J. & Zhang H.S. 2012. ENAC1, a NAC transcription factor, is an early and transient response regulator induced by abiotic stress in rice (Oryza sativa L.). Mol. Biotechnol. 52: 101–110.

    Article  CAS  PubMed  Google Scholar 

  • Tao L.Z., Cheung A.Y. & Wu H.M. 2002. Plant Rac-like GTPases are activated by auxin and mediate auxin-responsive gene expression. Plant Cell 14: 2745–2760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao L.Z., Cheung A.Y., Nibau C. & Wu H.M. 2005. RAC GTPases in tobacco and Arabidopsis mediate auxin-induced formation of proteolytically active nuclear protein bodies that contain AUX/IAA proteins. Plant Cell 17: 2369–2383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thao N.P., Chen L., Nakashima A., Hara S., Umemura K., Takahashi A., Shirasu K., Kawasaki T. & Shimamoto K. 2007. RAR1 and HSP90 form a complex with Rac/Rop GTPase and function in innate-immune responses in rice. Plant Cell 19: 4035–4045.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu H.M., Hazak O., Cheung A.Y. & Yalovsky S. 2011. RAC/ROP GTPases and auxin signaling. Plant Cell 23: 1208–1218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y., Zhao S., Tian H., He Y., Xiong W., Guo L. & Wu Y. 2013. CPK3-phosphorylated RhoGDI1 is essential in the development of Arabidopsis seedlings and leaf epidermal cells. J. Exp. Bot. 64: 3327–3338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yalovsky S., Bloch D., Sorek N. & Kost B. 2008. Regulation of membrane trafficking, cytoskeleton dynamics, and cell polarity by ROP/RAC GTPases. Plant Physiol. 147: 1527–1543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z. 2002. Small GTPases: versatile signaling switches in plants. Plant Cell (Suppl.) 14: S375–S388.

    Article  CAS  Google Scholar 

  • Zhang Y. & McCormick S. 2007. A distinct mechanism regulating a pollen specific guanine nucleotide exchange factor for the small GTPase Rop in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 104: 18830–18835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Z., Gu W., Cai T., Tagliani L., Hondred D., Bond O., Schroeder S., Rudert M. & Pierce D. 2001. High throughput genetic transformation mediated by Agrobacterium tumefaciens in maize. Mol. Breed. 8: 323–333.

    Article  CAS  Google Scholar 

  • Zheng Z.L., Nafisi M., Tam A., Li H., Crowell D.N., Chary S.N., Schroeder J.I., Shen J. & Yang Z. 2002. Plasma membraneassociated ROP10 small GTPase is a specific negative regulator of abscisic acid responses in Arabidopsis. Plant Cell 14: 2787–2797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the research grants from the National Science Foundation of China (31171182; U1204305; 31301252), Program for Innovative Research Team in Science and Technology in University of Henan Province (13IRTSTHN009; 15IRTSTHN020) and the Doctor Initiative Foundation of Henan Normal University (Nos 11126, 11129).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-hong Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Jj., Zhang, J., Hao, Yf. et al. Distinct expression patterns of the GDP dissociation inhibitor protein gene (OsRhoGDI2) from Oryza sativa during development and abiotic stresses. Biologia 71, 1230–1239 (2016). https://doi.org/10.1515/biolog-2016-0146

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2016-0146

Key words

Navigation