Skip to main content
Log in

First report of microorganisms of Caucasus glaciers (Georgia)

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Glaciers constitute freshwater reservoirs. They are the main contributors to sea level rise, play an important role in global carbon cycle and are the source of water for people. Despite extreme conditions, they are also a habitat for a number of cryophilic organisms. To fill the gap in the knowledge on the biota on glaciers in Caucasus, the aim of the study was to: (i) isolate and enumerate culturable heterotrophs; (ii) determine the number of coliforms and enterococci bacteria; and (iii) analyze total microbial 16S rRNA gene in cryoconite sediments, ice and gravel. The material was collected from two glaciers in Caucasus (Georgia, Svaneti region). Bacteria Aeromonas sp. and Pseudomonas sp. were found. The total number of culturable heterotrophic bacteria ranged from 0.2 × 101 colony forming units per mL in ice and gravel of the Chalaadi Glacier to 3.9 × 103 colony forming units per mL in a cryoconite sediments of the Adishi Glacier. The average number of 16S rRNA gene copies ranged from 5.3 × 105/g to 5.3 × 106/g in ice and gravel from Chalaadi Glacier and from 3.1 × 105/g to 1.5 × 107/g in a cryoconite of the Adishi Glacier. The 16S rRNA gene of five Pseudomonas sp. isolates was sequenced. Moreover, in the analyzed cryoconite material, a rare collembolan Gnathisotoma sp. was found, which constitutes the first record of springtails in cryoconite holes in the Northern hemisphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

asl:

above sea level

CFU:

colony forming units

qPCR:

quantitative real-time PCR

References

  • Altschul S.F., Gish W., Miller W., Myers E.W. & Lipman D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403–410.

    Article  CAS  PubMed  Google Scholar 

  • Anesio A.M., Hodson A., Fritz A., Psenner R. & Sattler B. 2009. High microbial activity on glaciers: importance to the global carbon cycle. Glob. Change Biol. 15: 955–960.

    Article  Google Scholar 

  • Anesio A.M. & Laybourn-Parry J. 2012. Glaciers and ice sheets as a biome. Trends Ecol. Evol. 4: 219–225.

    Article  Google Scholar 

  • Barros J., Becerra J., González C. & Martínez M. 2013. Antibacterial metabolites synthesized by psychrotrophic bacteria isolated from cold-freshwater environments. Folia Microbiol. 58: 127–133.

    Article  CAS  Google Scholar 

  • Bellas C.M., Anesio A.M., Telling J., Stibal M., Tranter M. & Davis S. 2013. Viral impacts on bacterial communities in Arctic cryoconite. Environ. Res. Lett. 8: 1–9.

    Article  Google Scholar 

  • Carnahan A.M. & Joseph S.W. 2005. Order XII. Aeromonadales. 2nd Edition, Volume 2 (The Proteobacteria), Part B (The Gammaproteobacteria), pp. 556–578. In: Garrity G.M., Brenner D.J., Krieg N.R. & Staley J.T. (eds), Bergey’s Manual of Systematic Bacteriology. Springer, New York.

    Chapter  Google Scholar 

  • Christner B.C., Kvitko B.H. & Reeve J.N. 2003. Molecular identification of Bacteria and Eukarya inhabiting an Antarctic cryoconite hole. Extremophiles 7: 177–183.

    Article  CAS  PubMed  Google Scholar 

  • Cook J., Edwards A., Takeuchi N. & Irvine-Fynn T. 2016. Cryoconite: the dark biological secret of the cryosphere. Prog. Phys. Geog. 40: 66–111.

    Article  Google Scholar 

  • Coulson S.J., Convey P., Aakra K., Aarvik L., Ávila-Jiménez M.L., Babenko A., Biersma E.M., Boström S., Brittain J.E., Carlsson A.M., Christoffersen K., De Smet W.H., Ekremj T., Fjellberg A., Füreder L., Gustafssonm D., Gwiazdowicz D.J., Hansen L.O., Holmstrup M., Hullé M., Kaczmarek Ł., Kolicka M., Kuklin V., Lakka H.K., Lebedeva N., Makarova O., Maraldo K., Melekhina E., Ødegaard F., Pilskog H.E., Simon J.C., Sohlenius B., Solhøy T., Søli G., Stur E., Tanasevitch A., Taskaeva A., Velle G., Zawierucha K. & Zmudczyńska-Skarbek K. 2014. The terrestrial and freshwater invertebrate biodiversity of the archipelagoes of the Barents Sea; Svalbard, Franz Josef Land and Novaya Zemlya. Soil Biol. Biochem. 68: 440–470.

    Article  CAS  Google Scholar 

  • Edwards A. 2015. Coming in from the cold: potential microbial threats from the terrestrial cryosphere. Front. Earth Sci. 3: 12

    Article  Google Scholar 

  • Edwards A., Anesio A.M., Rassner S.M., Sattler B., Hubbard B., Perkins W.T., Young M. & Griffith G.W. 2011. Possible interactions between bacterial diversity, microbial activity and supraglacial hydrology of cryoconite holes in Svalbard. ISME J. 5: 150–160.

    Article  PubMed  Google Scholar 

  • Edwards A., Mur L.A.J., Girdwood S.E., Anesio A.M., Stibal M., Rassner S.M.E., Hell K., Pachebat J.A., Post B., Bussell J.S., Cameron S.J.S., Griffith G.W., Hodson A.J. & Sattler B. 2014. Coupled cryoconite ecosystem structure-function relationships are revealed by comparing bacterial communities in alpine and Arctic glaciers. FEMS Microbiol. Ecol. 89: 222–237.

    Article  CAS  PubMed  Google Scholar 

  • Edwards A., Pachebat J.A., Swain M., Hegarty M., Hodson A.J., Irvine-Fynn T.D.L., Rassner S.M.E. & Sattler B. 2013. A metagenomic snapshot of taxonomic and functional diversity in an alpine glacier cryoconite ecosystem. Environ. Res. Lett. 8: 1–11.

    Article  Google Scholar 

  • Fjellberg A. 2010. Cryophilic Isotomidae (Collembola) of the Northwestern Rocky Mountains, U.S.A. Zootaxa 2513: 27–49.

    Article  Google Scholar 

  • Grape M., Farra A., Kronvall G. & Sundström L. 2005. Integrons and gene cassettes in clinical isolates of co-trimoxazoleresistant Gram-negative bacteria. Clin. Microbiol. Infect. 11: 185–192.

    Article  CAS  PubMed  Google Scholar 

  • Grzesiak J., Górniak D., ´Swiątecki A., Aleksandrzak-Piekarczyk T., Szatraj K. & Zdanowski M.K. 2015. Microbial community development on the surface of Hans and Werenskiold Glaciers (Svalbard, Arctic): a comparison. Extremophiles 19: 885–897.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gobejishvili R., Lomidze N. & Tielidze L. 2011. Late Pleistocene (Würmian) glaciations of the Caucasus. Dev. Quat. Sci. 15: 141–147.

    Google Scholar 

  • Havelaar A.H. & Vonk M. 1988. The preparation of ampicillin dextrin agar for the enumeration of Aeromonas in water. Lett. Appl. Microbiol. 7: 169–171.

    Article  CAS  Google Scholar 

  • Hodson A., Anesio A.M., Tranter M., Fountain A., Osborn M., Priscu J., Laybourn-Parry J. & Sattler B. 2008. Glacial ecosystems. Ecol. Monogr. 78: 41–67.

    Article  Google Scholar 

  • Hodson A., Cameron K., Brggild C., Irvine-Fynn T., Langford H., Pearce D. & Banwart S. 2010. The structure, biological activity and biogeochemistry of cryoconite aggregates upon an Arctic valley glacier: Longyearbreen, Svalbard. J. Glaciol. 56: 349–362.

    Article  CAS  Google Scholar 

  • Ikner L.A., Toomey R.S., Nolan G., Neilson J.W., Pryor B.M. & Maier R.M. 2007. Culturable microbial diversity and the impact of tourism in Kartchner Caverns, Arizona. Microb. Ecol. 53: 30–42.

    Article  PubMed  Google Scholar 

  • Kaser G., Juen I., Georges C., Gomez J. & Tamayo W. 2003. The impact of glaciers on the runoff and the reconstruction of mass balance history from hydrological data in the tropical Cordillera Blanca, Peru. J. Hydrol. 282: 130–144.

    Article  Google Scholar 

  • Kaczmarek Ł., Jakubowska N., Celewicz-Gołdyn S. & Zawierucha K. 2016. Cryoconite holes microorganisms (algae, Archaea, bacteria, cyanobacteria, fungi, and Protista) — a review. Polar Rec. 52: 176–203.

    Article  Google Scholar 

  • Kikuchi Y. 1994. Glaciella, a new genus of freshwater Canthocamptidae (Copepoda, Harpacticoida) from a glacier in Nepal, Himalayas. Hydrobiologia 292: 59–66.

    Article  Google Scholar 

  • Kohshima S. 1984. A novel cold tolerant insect found in a Himalayan glacier. Nature 310: 225–227.

    Article  Google Scholar 

  • Labbé D., Margesin R., Schinner F., Whyte L.G. & Greer C.W. 2007. Comparative phylogenetic analysis of microbial communities in pristine and hydrocarbon-contaminated Alpine soils. FEMS Microbiol. Ecol. 59: 466–475.

    Article  PubMed  CAS  Google Scholar 

  • Lee M.Y., Kim S.Y., Jung J., Kim E.H., Cho K.H., Schinner F., Margesin R., Hong S.G. & Lee H.K. 2011. Cultured bacterial diversity and human impact on Alpine glacier cryoconite. J. Microbiol. 49: 355–362.

    Article  CAS  PubMed  Google Scholar 

  • Nossa C.W., Oberdorf W.E., Yang L., Aas J.A., Paster B.J., Desantis T.Z., Brodie E.L., Malamud D., Poles M.A. & Pei Z. 2010. Design of 16S rRNA gene primers for 454 pyrosequencing of the human foregut microbiome. World J. Gastroenter. 16: 4135–4144.

    Article  CAS  Google Scholar 

  • Pace N.R. 1997. A molecular view of microbial diversity and the biosphere. Science 276: 734–740.

    Article  CAS  PubMed  Google Scholar 

  • Porazinska D.L., Fountain A.G., Nylen T.H., Tranter M., Virginia R.A. & Wall D.H. 2004. The biodiversity and biogeochemistry of cryoconite holes from McMurdo Dry Valley glaciers, Antarctica. Arc. Antarct. Alp. Res. 36: 84–91.

    Article  Google Scholar 

  • Bacteria of Caucasus glaciers 625 Radić V., Bliss A., Beedlow A.C., Hock R., Miles E. & Cogley J.G. 2014. Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models. Clim. Dynam. 42: 37–58.

    Article  Google Scholar 

  • Saul D.J., Aislabie J.M., Brown C.E., Harris L. & Foght J.M. 2005. Hydrocarbon contamination changes the bacterial diversity of soil from around Scott Base, Antarctica. FEMS Microbiol. Ecol. 53: 141–155.

    Article  CAS  PubMed  Google Scholar 

  • Säwström C., Mumford P., Marshall W., Hodson A. & Laybourn-Parry J. 2002. The microbial communities and primary productivity of cryoconite holes in an Arctic glacier (Svalbard 79° N). Polar Biol. 25: 591–596.

    Google Scholar 

  • Segawa T., Yoshimura Y., Watanabe K., Kanda H. & Kohshima S. 2011. Community structure of culturable bacteria on surface of Gulkana Glacier, Alaska. Polar Sci. 5: 41–51.

    Article  Google Scholar 

  • Sheridan P.P., Miteva V.I. & Brenchley J.E. 2003. Phylogenetic analysis of anaerobic psychrophilic enrichment cultures obtained from a Greenland glacier ice core. Appl. Environ. Microbiol. 69: 2153–2160.

    Article  CAS  Google Scholar 

  • Singh P., Singh S.M. & Dhakephalkar P. 2014. Diversity, cold active enzymes and adaptation strategies of bacteria inhabiting glacier cryoconite holes of High Arctic. Extremophiles 18: 229–242.

    Article  CAS  PubMed  Google Scholar 

  • Smith C.J. & Osborn A.M. 2009. Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microbiol. Ecol. 67: 6–20.

    Article  CAS  PubMed  Google Scholar 

  • Stibal M., Schostag M., Cameron K.A., Hansen L.H., Chandler D.M., Wadham J.L. & Jacobsen C.S. 2015. Different bulk and active bacterial communities in cryoconite from the margin and interior of the Greenland ice sheet. Environ. Microbiol. Rep. 7: 293–300.

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi N. & Kohshima S. 2004. A snow algal community on Tyndall Glacier in the Southern Patagonia Icefield, Chile.. Arct. Antarct. Alp. Res. 36: 92–99.

    Article  Google Scholar 

  • Takeuchi N., Kohshima S. & Seko K. 2001. Structure, formation, and darkening process of albedo-reducing material (cryoconite) on a Himalayan glacier: a granular algal mat growing on the glacier. Arc. Antarct. Alp. Res. 33: 115–122.

    Article  Google Scholar 

  • Tielidze L.G., Lominadze G. & Lomidze N. 2015. Glaciers fluctuation over the last half century in the headwaters of the Enguri River, Caucasus Mountains, Georgia. Int. J. Geosci. 6: 393–401.

    Google Scholar 

  • Vaughan D.G., Comiso J.C., Allison I., Carrasco J., Kaser G., Mote P., Murray T., Paul F., Ren J., Rignot E., Solomina O., Steffen K. & Zhang T. 2013. Observations: Cryosphere. In: Stocker T.F., Qin D., Plattner G.K., Tignor M., Allen S.K. & Boschung J. (eds), Contribution of working group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Webster N.S. & Negri A. P. 2006. Site-specific variation in Antarctic marine biofilms established on artificial surfaces. Environ. Microbiol. 8: 1177–1190.

    Article  CAS  PubMed  Google Scholar 

  • Wharton R.A., McKay C.P., Simmons G.M. & Parker B.C. 1985. Cryoconite holes on glaciers. Bioscience 35: 499–503.

    Article  PubMed  Google Scholar 

  • Xi C., Zhang Y., Marrs Y.L., Ye W., Simon C., Foxman B. & Nriagu J. 2009. Prevalence of antibiotic resistance in drinking water treatment and distribution systems. Appl. Environ. Microbiol. 75: 5714–5718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zawierucha K., Kolicka M., Takeuchi N. & Kaczmarek Ł. 2015. What animals can live in cryoconite holes? A faunal review. J. Zool. 295: 159–169.

    Article  Google Scholar 

  • Zawierucha K., Vonnahme T.R., Devetter M., Kolicka M., Ostrowska M., Chmielewski S. & Kosicki J.Z. 2016. Area, depth and elevation of cryoconite holes in the Arctic do not influence Tardigrada densities. Pol. Polar Res. 37: 325–334.

    Article  Google Scholar 

  • Zhang S.H., Hou S.G., Yang G.L., Wang J.H. 2010. Bacterial community in the East Rongbuk Glacier, Mt. Qomolangma (Everest) by culture and culture-independent methods. Microbiol. Res. 165: 336–345.

    Article  CAS  PubMed  Google Scholar 

  • Zhang W., Zhang G., Liu G., Li Z., Chen T. & An L. 2012. Diversity of bacterial communities in the snowcover at tian shan number 1 glacier and its relation to climate and environment. Geomicrobiol. J. 29: 459–469.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Zawierucha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makowska, N., Zawierucha, K., Mokracka, J. et al. First report of microorganisms of Caucasus glaciers (Georgia). Biologia 71, 620–625 (2016). https://doi.org/10.1515/biolog-2016-0086

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2016-0086

Key words

Navigation