Skip to main content
Log in

RCD1 homologues and their constituent WWE domain in plants: analysis of conservation through phylogeny methods

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

RCD1 protein confers multiple stress tolerance to plant, while playing in it developmental roles as well. After an extensive characterization of its gene in A. thaliana, role of its orthologues under varying stresses have also been characterized in rice, wheat and tomato plants. RCD1 of A. thaliana with its rice homologue has been found consensually involved in providing plant tolerance against oxidative and osmotic stresses; however, its stress-tolerance roles under other environmental stresses seem rather contrasting. This is also the case with the expression profile, primary protein structure and binding affinities of these two homologues. Such differences in behaviours of the RCD1 homologues raises need to study their evolutionary status, in an effort to infer relative conservation of their functions. To elucidate this pattern, available RCD1 homologues have been subjected to Maximum Parsimony and Bayesian Inference-based analysis in this research. Conservation status of the SRO1/RCD1 type-specific WWE domain has also been explored using the available sequences in online databases along with the WWE-encoding sequences obtained in sugarcane, wheat and rice using single set of primers designed on conserved flanking regions. Results suggest a high conservation of these homologues within plant families, suggesting family-specific conservation of their functionalities in demonstrating stress responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahlfors R., Lang S., Overmyer K., Jaspers P., Brosche M., Tauriainen A., Kollist H., Tuominen H., Belles-Boix E., Piippo M., Inze D., Palva E.T. & Kangasjarvi J. 2004. Arabidopsis RADICAL-INDUCED CELL DEATH1 belongs to the WWE protein-protein interaction domain protein family and modulates abscisic acid, ethylene, and methyl jasmonate responses. Plant Cell. 16: 1925–1937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anjum S., Raza S., Azhar A. & Qamarunnisa S. 2015. Bnsro 1: A new homologue of Arabidopsis thaliana rcd1 from Brassica napus. Biologia 70: 588–598.

    Article  CAS  Google Scholar 

  • Aravind L. 2001. The WWE domain: a common interaction module in protein ubiquitination and ADP ribosylation. Trends Biochem. Sci. 26: 273–275.

    Article  CAS  PubMed  Google Scholar 

  • Babajani G., Effendy J. & Plant A.L. 2009. Sl-SROl increases salt tolerance and is a member of the radical-induced cell death 1-similar to RCD1 gene family of tomato. Plant Sci. 176: 214–222.

    Article  CAS  Google Scholar 

  • Bloomster T., Salojärvi J., Sipari N., Brosché M., Ahlfors R., Keinänen M., Overmeyer K. & Kangasjärvi J. 2011. Apoplastic reactive oxygen species transiently decrease auxin signaling and cause stress-induced morphogenic response in Arabidopsis. Plant Physiol. 157: 1866–1883.

    Article  CAS  Google Scholar 

  • Boscaiu M., Donat P., Linares J. & Vicente O. 2012. Stresstolerant wild plants: a source of knowledge and biotechnological tools for the genetic improvement of stress tolerance in crop plants. Not. Bot. Horti. Agrobo. 40: 323–327.

    Article  CAS  Google Scholar 

  • Boyer J.S. 1982. Plant productivity and environment. Science 218: 443–448.

    Article  CAS  PubMed  Google Scholar 

  • Corpet F. 1988. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 16: 10881–10890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Citarelli M., Teotia S. & Lamb R.S. 2010. Evolutionary history of the poly(ADP-ribose) polymerase gene family in eukaryotes. BMC Evol. Biol. 10: 308.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • D’Amours D., Desnoyers S., DaSilva I. & Poirier G. 1999. Poly (ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem. J. 342: 249–268.

    Article  PubMed  PubMed Central  Google Scholar 

  • Darriba D., Taboada G.L., Doallo R. & Posada D. 2012. ”jModel- Test 2: more models, new heuristics and parallel computing”. Nat. Methods 9: 772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • deCastro E., Sigrist C.J., Gattiker A., Bulliard V., Langendijk-Genevaux P.S., Gasteiger E., Bairoch A. & Hulo N. 2006. ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res. 34: 362–365.

    Article  CAS  Google Scholar 

  • Doyle J.J. & Doyle J.L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11–15.

    Google Scholar 

  • Drummond A.J. & Rambaut A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7: 214.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fujibe T., Saji H., Arakawa K., Yabe N., Takeuchi Y. & Yamamoto K.T. 2004. A methyl viologen resistant mutant of Arabidopsis, which is allelic to ozone-sensitive rcd1, is tolerant to supplemental ultraviolet-B irradiation. Plant Physiol. 134: 275–285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gasteiger E., Gattiker A., Hoogland C., Ivanyi I., Appel R.D. & Bairoch A. 2003. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 31: 3784–3788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodstein D.M., Shu S., Howson R., Neupane R., Hayes R.D., Fazo J., Mitros T., Dirks W., Hellsten U. & Putnam N. 2012. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 40: 1178–1186.

    Article  CAS  Google Scholar 

  • Hofmann K. & Bucher P. 1996. The UBA domain: a sequence motif present in multiple enzyme classes of the ubiquitination pathway. Trends Biochem. Sci. 21: 172–173.

    Article  CAS  PubMed  Google Scholar 

  • Jaspers P., Blomster T., Brosche M., Saloja J., Ahlfors R., Vainonen J.P., Reddy A.R., Immink R., Angenent G., Turck F., Overmyer K. & Kangasjärvi J. 2009. Unequally redundant RCD1 and SRO1 mediate stress and developmental responses and interact with transcription factors. Plant J. 60: 268–279.

    Article  CAS  PubMed  Google Scholar 

  • Jaspers P., Brosché M., Overmyer K. & Kangasjärvi J. 2010a. The transcription factor interacting protein RCD1 contains a novel conserved domain. Plant Signal. Behav. 5: 78–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaspers P., Overmyer K., Wrzaczek M., Vainonen J.P., Blomster T., Salojärvi J., Ramesha A.R. & Kangasjärvi J. 2010b. The RST and PARP-like domain containing SRO protein family: analysis of protein structure, function and conservation in land plants. BMC Genomics 11: 170.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Julia P.V., Pinja J., Michael W., Airi L., Ramesha A.R., Vaahtera L., Brosché M. & Kangasjärvi J. 2012. RCD1-DREB2A interaction in leaf senescence and stress responses in Arabidopsis thaliana. Biochem. J. 442: 573–581.

    Article  CAS  Google Scholar 

  • Katiyar-Agarwal S., Zhu J., Kim K., Agarwal M., Fu X., Huang A. & Zhu J.K. 2006. The plasma membrane Na+/H+ antiporter SOS1 interacts with RCD1 and functions in oxidative stress tolerance in Arabidopsis. Proc Natl. Acad. Sci. USA 103: 18816–18821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S., Wang M., Wei T., Meng C., Wang M. & Xia G. 2014. A wheat SIMILAR TO RCD-ONE gene enhances seedling growth and abiotic stress resistance by modulating redox homeostasis and maintaining genomic integrity. Plant Cell. 26: 164–180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchler-Bauer A., Anderson J.B., Cherukuri P.F., De Weese-Scott C., Geer L.Y., Gwadz M., He S., Hurwitz D.I., Jackson J.D., Ke Z. & et al. 2005. CDD: a Conserved Domain 650 B. Siddiqua et al. Database for protein classification. Nucleic Acids Res. 33: 192–196.

    Article  Google Scholar 

  • Overmyer K., Tuominen H., Kettunen R., Betz C., Langebartels C., Sandermann H., Kangasjärvi J. 2000. Ozone-sensitive Arabidopsis rcd1 mutant reveals opposite roles for ethylene and jasmonate signaling pathways in regulating superoxidedependent cell death. Plant Cell. 12: 1849–1862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Posada D. & Buckley T. 2004. Model selection and model averaging in phylognetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst. Biol. 53: 793–808.

    Article  PubMed  Google Scholar 

  • Pruitt K.D., Tatusova T. & Maglott D.R. 2007. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 35: 61–65.

    Article  Google Scholar 

  • Punta M., Coggill P.C., Eberhardt R.Y., Mistry J., Tate J., Boursnell C., Pang N., Forslund K., Ceric G., Clements J., Ceric G. & Clements J. 2012. The Pfam protein families database. Nucleic Acids Res. 40: 290–301.

    Article  CAS  Google Scholar 

  • Rhee S.Y., Beavis W., Berardini T.Z., Chen G., Dixon D., Doyle A., Margarita Garcia-Hernandez M., Huala E., Lander G., Montoa M. & et al. 2003. The Arabidopsis Information Resource (TAIR): a model organism database providing a centralized, curated gateway to Arabidopsis biology, research materials and community. Nucleic Acids Res. 31: 224–228.

    Article  CAS  PubMed  Google Scholar 

  • Rombel I.T., Sykes K.F., Rayner S. & Johnston S.A. 2002. ORFFINDER: a vector for high-throughput gene identification. Gene 282: 33–41.

    Article  CAS  PubMed  Google Scholar 

  • Rouard M., Guignon V., Aluome C., Laporte M.A., Droc G., Walde C., Zmasek C.M., Perin C. & Conte M.G. 2011. Green- PhylDB v2.0: comparative and functional genomics in plants. Nucleic Acids Res. 39: 1095–1102.

    Article  CAS  Google Scholar 

  • Sievers F., Wilm A., Dineen D., Gibson T.J., Karplus K., Li W., McWilliam H., Remmert M., Söding J., Thompson J.D. & Higgins D.G. 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7: 539.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sigrist C.J., de Castro E., Cerutti L., Cuche B.A., Hulo N., Bridge A., Bougueleret L. & Xenarios I. 2013. New and continuing developments at PROSITE. Nucleic Acids Res. 41: 344–347.

    Article  CAS  Google Scholar 

  • Solcitis P.S. & Solcitis D.E. 2013. Angiosperm phylogeny: A framework for studies of genome evolution. Plant Genome Diversity Volume 2. Springer Vienna, pp. 1–11.

    Google Scholar 

  • Swofford D.L. 2002. PAUP*: Phylogenetic analysis using parsimony (* and other methods). Version, 4.

    Google Scholar 

  • Teotia S. & Lamb R.S. 2009. The paralogous genes RADICALINDUCED CELL DEATH1 and SIMILAR TO RCD ONE1 have partially redundant functions during Arabidopsis development. Plant Physiol. 151: 180–198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson J.D., Higgins D.G. & Gibson T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673–4680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Untergrasser A., Cutcutache I., Koressaar T., Ye J., Faircloth B.C., Remm M. & Rozen S.G. 2012. Primer3 — new capabilities and interfaces. Nucleic Acids Res. 40: 115.

    Article  CAS  Google Scholar 

  • You J., Zong W., Li X., Ning J., Hu H., Li X., Xiao J. & Xiong L. 2013a. The SNAC1-targeted gene OsSRO1c modulates stomatal closure and oxidative stress tolerance by regulating hydrogen peroxide in rice. J. Exp. Bot. 64: 569–583.

    Article  CAS  PubMed  Google Scholar 

  • You J., Zong W., Du H., Hu H. & Xiong L. 2013b. A special member of the rice SRO family, OsSRO1c, mediates responses to multiple abiotic stresses through interaction with various transcription factors. Plant Mol. Biol. 4: 693–705.

    Google Scholar 

  • Zhu Y., Du B., Qian J., Zou B. & Hua J. 2013. Disease resistance gene-induced growth inhibition is enhanced by rcd1 independent of defense activation in Arabidopsis. Plant Physiol. 161: 2005–2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syeda Qamarunnisa.

Electronic supplementary material

11756_2016_7106642_MOESM1_ESM.pdf

Electronic supplementary material. The online version of this article (DOI: 10.1515/biolog-2016-0081) contains supplementary material, which is available to authorized users.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siddiqua, B., Qamarunnisa, S. & Azhar, A. RCD1 homologues and their constituent WWE domain in plants: analysis of conservation through phylogeny methods. Biologia 71, 642–650 (2016). https://doi.org/10.1515/biolog-2016-0081

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2016-0081

Key words

Navigation