Skip to main content

Advertisement

Log in

Response of the carpet shell clam (Ruditapes decussatus) and the Manila clam (Ruditapes philippinarum) to salinity stress

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Environmental stressors are known to play an important role in determining the distribution and abundance of intertidal species. Marine molluscs are particularly susceptible to changes in water temperature and salinity in intertidal zones. Ruditapes decussatus and Ruditapes philippinarum are marine intertidal clams, constantly exposed to salinity variations in their intertidal habitat. The goal of this study was to investigate whether these species would handle salinity increase as well as salinity decrease, given the general paucity of data on R. decussatus and R. philippinarum exposed to salinity changes. In this context, leucine aminopeptidase (LAP) activity changes following exposure to salinity change were investigated in clams from Tunisia and from Brittany. Samples of R. decussatus from Tunisia were maintained in salinity of 10‰, 20‰, 30‰, 45‰ and 55‰ for four weeks. Effects of salinity on LAP activity are also investigated in R. decussatus and in R. philippinarum from Brittany in salinities of 5‰, 10‰, 15‰, 17‰, 25‰, 30‰, 40‰, 45 ‰ and 55‰. Three sets of experiments were conducted: Short (20 h), medium (96 h) and long-term (four weeks). During salinity trials, LAP activity of R. decussatus ranged from 0.07 ± 0.04 to 0.2 ± 0.05 μmol of paranitroanilide mg protein−1 min−1 and from 0.15 ± 0.015 to 0.56 ± 0.41 mg protein−1 min−1 for clams from Tunisia and from Brittany, respectively. In the R. philippinarum species, results showed the occurrence of higher activity levels, values ranged from 0.26 ± 0.11 to 1.04 ± 0.38 μmol of paranitroanilide mg protein−1 min−1. None of the salinity regimes gave significant differences in LAP ctivity in R. decussatus from Tunisia. Conclusion has also been deduced from experiments carried out on R. decussatus and R. philippinarum from Brittany. Results reported here suggest that LAP ctivity seems to be not affected by salinity changes in populations investigated. The study provided some useful insights into response of the bivalves R. decussatus and R. philippinarum to salinity stress and offered a number of candidate hypothesis as potential explanations for moderate changes in LAP activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akberali H.B. 1978. Behaviour of Scrobicularia plana (da Costa) in water of various salinities. J. Exp. Mar. Biol. Ecol. 33 (3): 237–249 DOI: 10.1016/0022-0981(78)90011-4

    Article  Google Scholar 

  • Akberali H.B. & Davenport J. 1981. The responses of the bivalve Scrobicularia plana (da Costa) to gradual salinity changes. J. Exp. Mar. Biol. Ecol. 53 (2–3): 251–259. DOI: 10.1016/0022-0981(81)90024-1

    Article  Google Scholar 

  • Bayne B.L. 1973. The responses of three species of bivalve mollusc to declining oxygen tension at reduced salinity. Comp. Biochem. Physiol. Part A: Physiology 45 (3): 793–806 DOI: 10.1016/0300-9629(73)90082-0

    Article  CAS  Google Scholar 

  • Bayne B.L., Moore N.M & Koehn R.K. 1981. Lysosomes and the response by Mytilus edulis L. to an increase in salinity. Mar. Biol. Lett. 2 (4): 193–204

    CAS  Google Scholar 

  • Ben Aoun Z., Farhat F., Chouba L. & Hadj-Ali M.S. 2007. Investigation on possible chemical pollution of the Boughrara lagoon, south of Tunisia, by chemical wastes. Bull. Inst. Nat. Sci. Tech. Mer de Salammbô 34: 119–127

    Google Scholar 

  • Benrejeb-Jenhani A. & Romdhane M.S. 2002. Impact des perturbations anthropiques sur l’évolution du phytoplancton de la lagune de Boughrara, (TUNISIE). Bull. Inst. Nat. Sci. Tech. Mer de Salammbô 29: 65–75

    Google Scholar 

  • Bishop S.H. 1976. Nitrogen metabolism and excretion: regulation of intracellular and extracellular amino acid concentrations, pp. 414–431. In: Wiley M. (ed.), Estuarine Processes, Vol. I. Uses, Stresses and Adaptations to the Estuary, Conference Paper, Meeting of the Estuarine Research Conference, Galveston, Texas, 1975, 541 pp. ISBN: 1-48-324853-4

  • Breber P. 1985. On-growing of the carpet shell clam (Ruditapes decussatus) two years’ experience in Venice lagoon. Aquaculture 44 (1): 51–56 DOI: 10.1016/0044-8486(85)90041-9

    Article  Google Scholar 

  • Brent L.L. & Somero G.N. 2011. Transcriptomic responses to salinity stress in invasive and native blue mussels (genus Mytilus). Mol. Ecol. 20 (3): 517–529 DOI: 10.1111/j.1365-294X.2010.04973.x.

    Article  Google Scholar 

  • Buroker N. 1983. Population genetics of the American oyster Crassostrea virginica along the Atlantic coast and the Gulf of Mexico. Mar. Biol. 75 (1): 99–112 DOI: 10.1007/BF00392635

    Article  Google Scholar 

  • Caruso G. & Zaccone R. 2000. Estimates of leucine aminopeptidase activity in different marine and brackish environments. J. Appl. Microbiol. 89 (6): 951–959 DOI: 10.1046/j.1365-2672.2000.01198.x

    Article  CAS  PubMed  Google Scholar 

  • Deaton L.E. 2001 Hyperosmotic volume regulation in the gills of the ribbed mussel, Geukensia demissa: rapid accumulation of betaine and alanine J. Exp. Mar. Biol. Ecol. 260: 185–197 DOI: 10.1016/S0022-0981(01)00237-4

    Article  CAS  Google Scholar 

  • Denis F. 1995. Génétique biochimique et moléculaire de la palourde japonaise Ruditapes philippinarum. Doctorat de l’Université de Bretagne Ouest, 145 pp.

    Google Scholar 

  • De Zwaan A. & Wijsman T.C.M. 1976. Anaerobic metabolism in Bivalvia (Mollusca). Characteristics of anaerobic metabolism. Comp. Biochem. Physiol. Part B: Comp. Biochem. 54 (3): 313–324 DOI: 10.1016/0305-0491(76)90247-9

    Article  Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO) 2013a. FAO Yearbook of Fishery Statistics: Summary, Tables. Fish Crustaceans, Mollusks, etc. Capture Production by groups of species. ftp://ftp.fao.org/fi/stat/summary/a1d.pdf.page 26.

    Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO) 2013b. FAO Yearbook of Fishery Statistics: Summary Tables. World aquaculture production by species groups ftp://ftp.fao.org/fi/stat/summary/b-1.pdf.page 53.

    Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO) 2013c. FAO Yearbook of Fishery Statistics: Summary Tables. World aquaculture production of fish, crustaceans, molluscs, etc., by principal species. ftp://ftp.fao.org/fi/stat/summary/a-6.pdf.page 46.

    Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO) 2013d. FAO Yearbook of Fishery Statistics: Summary Tables. World aquaculture production of fish, crustaceans, molluscs by principal producers. ftp://ftp.fao.org/fi/stat/summary/a-4.pdf.page 44.

    Google Scholar 

  • Gardner J.P. & Kathiravetpillai G. 1997. Biochemical genetic variation at a leucine aminopeptidase (Lap) locus in blue (Mytilus galloprovincialis) and greenshell (Perna canaliculus) mussel population along a salinity gradient. Mar. Biol. 128 (4): 619–625 DOI: 10.1007/s002270050128

    Article  CAS  Google Scholar 

  • Gardner J.P.A. & Palmer N.L. 1998. Size dependant, spatial and temporal genetic variation at a leucine aminopeptidase (LAP) locus among blue mussel (Mytilus galloprovincialis). Mar. Biol. 132: 275–281

    Article  CAS  Google Scholar 

  • Garthwaite R. 1986. The genetics of California populations of Geukensia demissa (Dillwin) (Mollusca): further evidence on the selective importance of leucine aminopeptidase variation in salinity acclimation. Biol. J. Linn. Soc. 28 (4): 342–358 DOI: 10.1111/j.1095-8312.1986.tb01763.x

    Article  Google Scholar 

  • Garthwaite R. 1989. Leucine aminopeptidase variation and fitness parameters in the estuarine bivalve Geunkensia demissa. Mar. Biol. 103 (2): 183–192 DOI: 10.1007/BF00543346

    Article  Google Scholar 

  • Gharbi A., Zitari-Chatti R., Van Wormhoudt A., Dhraief M.N., Denis F., Said K. & Chatti N. 2011. Allozyme variation and population genetic structure in the carpet shell clam Ruditapes decussatus across the Siculo-Tunisian Strait. Biochem. Genet. 49 (11–12): 788–805. DOI: 10.1007/s10528-011-9450-8

    Article  CAS  PubMed  Google Scholar 

  • Gilles R. 1987. olume regulation in cells of euryhaline invertebrates, pp. 205–247. DOI: 10.1016/S0070-2161(08)60372-X. In: Gilles R., Kleinzeller A. & Bolis L. (eds), Current Topics in Membranes and Transport Vol. 30, Cell Volume Control: Fundamental and Comparative Aspects in Animal Cells. ISBN: 0-12-153330-1

    Chapter  Google Scholar 

  • Hamida L. 2004 Reproduction de la palourde Ruditapes decussatus, en milieu naturel (Sud Tunisie) et en milieu contrôlé (écloserie expérimentale): relation avec le système immunitaire. Thèse de doctorat de l’Université de Bretagne Occidentale, 120 pp.

    Google Scholar 

  • Harzallah A. 2003. Transport de polluants dans la lagune de Bizerte simulé par un mod`ele de circulation de l’eau. Bull. Inst. Nat. Sci. Tech. Mer de Salambôo 30: 121–133

    Google Scholar 

  • Hawkins A.J.S. & Day A.J. 1999. Metabolic interrelations underlying the physiological and evolutionary advantages of genetic diversity. Amer. Zool. 39: 401–411

    Article  CAS  Google Scholar 

  • Hilbish T.J., Deaton L.E. & Koehn R.K. 1982. Effect of an allozyme polymorphism on regulation of cell volume. Nature 298: 688–689

    Article  CAS  PubMed  Google Scholar 

  • Huang H., Tanaka H., Hammock B.D. & Morisseau C. 2009. Novel and highly sensitive fluorescent assay for leucine aminopeptidases. Anal. Biochem. 391 (1): 11–16 DOI: 10. 1016/j.ab.2009.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim W.S., Huh H.T., Huh S.H. & Lee T.W. 2001. Effects of salinity on endogenous rhythm of the Manila clam, Ruditapes philippinarum (Bivalvia: Veneridae). Mar. Biol. 138 (1): 157–162 DOI: 10.1007/s002270000430

    Article  CAS  Google Scholar 

  • Koehn R.K. 1978. Physiology and biochemistry of enzyme variation: the interface of ecology and population genetics, pp. 51–72. In: Brussard P. (ed.), Ecological Genetics: The Interface, Springer Verlag, N.Y., 248 pp. ISBN: 978-1-4612-6332-6. DOI: 10.1007/978-1-4612-6330-2

    Chapter  Google Scholar 

  • Koehn R.K. & Hilbish J. 1987. The adaptive importance of genetic variation. Amer. Sci. 75 (2): 134–141

    Google Scholar 

  • Koehn R.K. & Immermann F. 1981. Biochemical studies of aminopeptidase polymorphism in Mytilus edulis. I. Dependence of enzyme activity on season, tissue, and genotype. Biochem. Genet. 19 (11): 1115–1142 DOI: 10.1007/BF0048 4569

    Article  CAS  PubMed  Google Scholar 

  • Koehn R.K., Milkman R. & Mitton J.B. 1976. Population genetics of marine pelecypods. IV. Selection, migration and genetic differentiation in the blue mussel Mytilus edulis. Evolution 30 (1): 2–32 DOI: 10.2307/2407669

    Article  PubMed  Google Scholar 

  • Koehn R.K. & Mitton J.B. 1972. Population genetics of marine pelecypods. I. Ecological heterogeneity and evolutionary strategy at an enzyme locus. Am. Nat. 106 (947): 47–56 DOI: 10/1086/282750

    Article  Google Scholar 

  • Koehn R.K., Newell R.I.E. & Irnmermann F. 1980. Maintenance of an aminopeptidase allele frequency cline by natural selection. Proc. Natl. Acad. Sci. USA 77 (9): 5385–5389 DOI: 10.1073/pnas.77.9.5385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koehn R.K. & Siebenaller J.F. 1981. Biochemical studies of arninopeptidase polymorphism in Mytilus edulis. II. Dependence of reaction rate on physical factors and enzyme concentration. Biochem. Genet. 19 (11): 1143–1161 DOI: 10.1007/BF00484570

    Article  CAS  PubMed  Google Scholar 

  • Lowry O., Rosebrough N.J., Farr A.L. & Randell R.S. 1951. Protein measurements with Folin phenol reagent. J. Biol. Chem. 193 (1): 265–275 PMID: 14907713

    CAS  PubMed  Google Scholar 

  • Mangum C. & Towle D. 1977. Physiological adaptation to unstable environments. Amer. Scientist 65 (1): 67–75 PMID: 842933

    CAS  Google Scholar 

  • Michinina S.R. & Rebordinos L. 1997. Genetic differentiation in marine and estuarine populations of Crassostrea angulata. Mar. Ecol. Prog. Ser. 154: 167–174

    Article  Google Scholar 

  • Moore M.N., Koehn R.K. & Bayne B.L. 1980. Leucine aminopep-tidase (aminopeptidase-1), N-acetyl-beta-hexosaminidase and lysosomes in the mussel, Mytilus edulis L., in response to salinity changes. J. Exp. Zool. 214 (3): 239–249 DOI: 10. 1002/jez.1402140302

    Article  CAS  Google Scholar 

  • Moraga D. 1984. Polymorphisme enzymatique de populations naturelles et expérimentales de la palourde européennes (Ruditapes decussatus). Thèse de doctorat de l’Université de Bretagne Occidentale, 114 pp.

    Google Scholar 

  • National Research Council of the National Academies 2010. Ecosystem Concepts for Sustainable Bivalve Mariculture. National Academies Press, Washington DC, 190 pp. DOI: 10.17226/12802. ISBN: 978-0-309-38486-5

    Google Scholar 

  • Nirchio M., Pérez J. & Cequea H. 1991. Allozyme variation of Lap loci in Crassostrea rhizophorae in relation to temperature and/or salinity. Scientia Marina 55 (4): 563–587

    Google Scholar 

  • Pierce S.K. 1971. Volume regulation and valve movements by marine mussels. Comp. Biochem. Physiol. Part A: Physiology 39 (1): 103–117 DOI: 10.1016/0300-9629(71)90350-1

    Article  Google Scholar 

  • Rose R.L. 1984. Genetic variation in the oyster, Crassostrea virginica (Gmelin), in relation to environmental variation. Estuaries 7 (2): 128–132 DOI: 10.2307/1351766

    Article  Google Scholar 

  • Schoffeniels E. 1976. Adaptations with respect to salinity. Biochem. Soc. Symp. 41: 179–204 PMID: 788717

    CAS  Google Scholar 

  • Shurova N.M. 2001. Influence of Salinity on the Structure and the State of Bivalve Mytilus galloprovincialis populations. Russ. J. Mar. Biol. 27 (3): 151–155 DOI: 10.1023/A:1016713401 707

    Article  Google Scholar 

  • Skalamera J.P., Renaud F., Raymond M. & De Meeűs T. 1999. No evidence for genetic differentiation of the mussel Mytilus galloprovincialis between lagoons and the seaside. Mar. Ecol. Prog. Ser. 178: 251–258 DOI: 10.3354/meps178251

    Article  Google Scholar 

  • Somero G.N. & Bowlus R.D. 1983. Osmolyte and metabolic end products of mollusks: the design of compatible solute systems, pp. 77–100. In: Hochachka P.W. (ed.), The Mollusca. Environmental Biochemistry and Physiology Vol. 2, Academic Press, New York, 362 pp. ISBN: 0-12-751402-3

    Google Scholar 

  • Tomanek L. & Helmuth B. 2002. Physiological Ecology of Rocky Intertidal Organisms: A Synergy of Concepts. Integ. Comp. Biol. 42 (4): 771–775 DOI: 10.1093/icb/42.4.771.

    Article  Google Scholar 

  • Veiga M.P.T., Gutierre S.M.M., Castellano G.C. & Freire C.A. 2015. Tolerance of high and low salinity in the intertidal gastropod Stramonita brasiliensis (Muricidae): behaviour and maintenance of tissue water content. J. Mollus. Stud. 82 (1): 154–160 DOI: 10.1093/mollus/eyv044

    Google Scholar 

  • Venier P., De Pittŕ C., Bernante F., Varotto L., De Nardi B., Bovo G., Roch P., Novoa B., Figueras A., Pallavicini A. & Lanfranchi G. 2009. MytiBase: a knowledge base of mussel (M. galloprovincialis) transcribed sequences. BMC Genomics 10: 72. DOI: 10.1186/1471-2164-10-72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yancey P.H., Clark M.E., Hand S.C., Bowlus R.D. & Somero G.N. 1982. Living with water stress: evolution of osmolyte systems. Science 217 (4566): 1214–1222 DOI: 10.1126/sci-ence.7112124

    Article  CAS  PubMed  Google Scholar 

  • Young J.P.W., Koehn R.K. & Arnheim N. 1979. Biochemical characterization of “Lap”, a polymorphic aminopeptidase from the blue mussel Mytilus edulis. Biochem. Genet. 17 (3): 305–323 DOI: 10.1007/BF00498971

    Article  CAS  PubMed  Google Scholar 

  • Zhao X., Yu H., Kong L. & Li Q. 2012. Transcriptomic Responses to Salinity Stress in the Pacific Oyster Crassostrea gigas. PLoS One 7 (9): e46244. DOI: 10.1371/journal.pone.0046244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Horn J. & Tolley S.G. 2009. Acute response of the estuarine crab Eurypanopeus depressus to salinity and desiccation stress. J. Crustacean Biol. 29 (4): 556–561 DOI: doi:10.1651/08-3123.1

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank all people who contributed to this work. We gratefully acknowledge Mr M. Nejib Medhioub for his assistance during experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aicha Gharbi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gharbi, A., Farcy, E., Van Wormhoudt, A. et al. Response of the carpet shell clam (Ruditapes decussatus) and the Manila clam (Ruditapes philippinarum) to salinity stress. Biologia 71, 551–562 (2016). https://doi.org/10.1515/biolog-2016-0072

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2016-0072

Key words

Navigation