Skip to main content
Log in

Herbal augmentation enhances malachite green biodegradation efficacy of Saccharomyces cerevisiae

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Saccharomyces cerevisiae was able to degrade a highly toxic textile dye malachite green (MG) at 100 mg/L concentration. Although 99% decolourization was observed, a tremendous metabolic and oxidative stress was exerted on the cells. Ethanolic extracts of Terminalia chebula, Clitoria ternatea and Boerhaavia diffusa at a concentration of 1 mg/mL were independently supplied to S. cerevisiae cells to counter the stress. T. chebula, C. ternatea and B. diffusa extracts reduced the activities of glutathione peroxidase (67, 8 and 71%), superoxide dismutase (2, 7 and 16%) and catalase (16, 52 and 57%), respectively. Inductions in the activities of laccase (66, 82 and 50%), lignin peroxidase (35, 75 and 10%), NADH-DCIP reductase (43, 52 and 91%) and MG reductase (66, 126 and 117%) were observed respectively. Presence of dye (MG) extended the lag phase of the growth cycle of S. cerevisiae up to 36 h, which was observed to be restored to normal (4 h) after phytoextract supplementation. Scanning electron microscope imaging revealed the restored cell morphology upon exposure to plant extracts. The accumulation of reactive oxygen species (ROS) was observed to be 355% greater in cells exposed to MG, which was significantly reduced after phytoextracts augmentation when compared to control cells. Phytoextracts proved to be beneficial in increasing the viability of S. cerevisiae cells and reduced the intracellular ROS and nuclear damage. Inclusion of plant extracts during decolourization proved to be beneficial and protected the cells so that 20 treatment cycles could be run achieving significant removal of MG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABTS:

2,2-azino-bis-3-ethyl benzothiazoline-6-sulphonic acid

a.u.:

arbitrary unit

CFUs:

colony forming units

DAPI:

4’,6-diamidino-2-phenylindole

H2DCF:

2’7’-dichlorofluorescin

MG:

malachite green

ROS:

reactive oxygen species

SEM:

scanning electron microscope

References

  • Allen S.A., Clark W., McCaffery J.M., Cai Z., Lanctot A., Slininger P.J., Liu Z.L. & Gorsich S.W. 2010. Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae. Biotechnol. Biofuels 3: 2.

    Article  PubMed  PubMed Central  Google Scholar 

  • An S.Y., Min S.K., Cha I.H., Choi Y.L., Cho Y.S., Kim C.H. & Lee Y.C. 2002. Decolorization of triphenylmethane and azo dyes by Citrobacter sp. Biotechnol. Lett. 24: 1037–1040

    Article  CAS  Google Scholar 

  • Asgher M. & Bhatti H.N. 2012. Evaluation of thermodynamics and effect of chemical treatments on sorption potential of Citrus waste biomass for removal of anionic dyes from aqueous solutions. Ecol. Eng. 38: 79–85

    Article  Google Scholar 

  • Balsano C. & Alisi A. 2009. Antioxidant effect of natural bioactive compounds. Curr. Pharm. Design 15: 3063–3073

    Article  CAS  Google Scholar 

  • Bose B., Motiwale L. & Rao K.V.K. 2005. DNA damage and G2/M arrest in Syrian hamster embryo cells during Malachite green exposure are associated with elevated phosphorylation of E.K. and JNK1. Cancer Lett. 230: 260–270

    Article  CAS  PubMed  Google Scholar 

  • Burhans W.C., Weinberger M., Marchetti M. A., Ramachandran L., D’Urso G. & Huberman J. A. 2003. Apoptosis-like yeast cell death in response to DNA damage and replication defects. Mutat. Res. 532: 227–243

    Article  CAS  PubMed  Google Scholar 

  • Couto S.R. 2009. Dye removal by immobilised fungi. Biotechnol. Advan. 27: 227–235

    Article  Google Scholar 

  • Culp S. & Beland F. 1996. Malachite green: a toxicological review. Int. J. Toxicol. 15: 219–238

    Google Scholar 

  • Deng D., Guo J., Zeng G. & Sun G. 2008. Decolorization of anthraquinone, triphenylmethane and azo dyes by a new isolated Bacillus cereus strain DC11. Int. Biodeterior. Biodegrad. 62: 263–269

    Article  CAS  Google Scholar 

  • Dhamgaye S., Devaux F., Manoharlal R., Vandeputte P., Shah A.H., Singh A., Blugeon C., Sanglard D. & Prasad R. 2012. In vitro effect of malachite green on Candida albicans involves multiple pathways and transcriptional regulators UPC2 and STP2. Antimicrob. Agents Chemother. 56: 495–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hauptmann P., Riel C., Kunz-Schughart L.A., Fröhlich K.U., Madeo F. & Lehle L. 2006. Defects in N-glycosylation induce apoptosis in yeast. Mol. Microbiol. 59: 765–778

    Article  CAS  PubMed  Google Scholar 

  • Jadhav J.P. & Govindwar S.P. 2006. Biotransformation of malachite green by Saccharomyces cerevisiae MTCC 463. Yeast 23: 315–323

    Article  CAS  PubMed  Google Scholar 

  • Jakubowski W., Biliński T. & Bartosz G. 2000. Oxidative stress during aging of stationary cultures of the yeast Saccharomyces cerevisiae. Free Radic. Biol. Med. 28: 659–664

    Article  CAS  PubMed  Google Scholar 

  • Jones J.J. & Iii J.O.F. 2003. Decolorization of malachite green and crystal violet by waterborne pathogenic mycobacteria. Antimicrob. Agents Chemother. 47: 2323–2326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khandare R.V., Kabra A.N., Awate A.V. & Govindwar S.P. 2013. Synergistic degradation of diazo dye Direct Red 5B by Portulaca grandiflora and Pseudomonas putida. Int. J. Environ. Sci. Technol. 10: 1039–1050

    Article  CAS  Google Scholar 

  • Lowry O.H., Rosebrough N.J., Farr A.L. & Randall R.J. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265–275

    CAS  PubMed  Google Scholar 

  • Madeo F., Fröhlich E., Ligr M., Grey M., Sigrist S.J., Wolf D.H. & Fröhlich K.U. 1999. Oxygen stress: a regulator of apoptosis in yeast. J. Cell Biol. 145: 757–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahudawala D.M., Redkar A.A., Wagh A., Gladstone B. & Rao K. V. 1999. Malignant transformation of Syrian hamster embryo (SHE) cells in culture by malachite green: an agent of environmental importance. Indian J. Exp. Biol. 37: 904–918

    CAS  PubMed  Google Scholar 

  • Mukherjee S., Pawar N., Kulkarni O., Nagarkar B., Thopte S., Bhujbal A. & Pawar P. 2011. Evaluation of free-radical quenching properties of standard Ayurvedic formulation Vayasthapana Rasayana. BMC Complement. Altern. Med. 11: 38.

    Google Scholar 

  • Panandiker A., Fernandes C. & Rao K.V. 1992. The cytotoxic properties of malachite green are associated with the increased demethylase, aryl hydrocarbon hydroxylase and lipid peroxidation in primary cultures of Syrian hamster embryo cells. Cancer Lett. 67: 93–101

    Article  CAS  PubMed  Google Scholar 

  • Panandiker A., Fernandes C., Rao T.K. & Rao K. V. 1993. Morphological transformation of Syrian hamster embryo cells in primary culture by malachite green correlates well with the evidence for formation of reactive free radicals. Cancer Lett. 74: 31–36

    Article  CAS  PubMed  Google Scholar 

  • Parekh J. & Chanda S. V. 2007. In vitro antimicrobial activity and phytochemical analysis of some Indian medicinal plants. Turk. J. Biol. 31: 53–58

    CAS  Google Scholar 

  • Perrone G.G., Tan S.X. & Dawes I.W. 2008. Reactive oxygen species and yeast apoptosis. Biochim. Biophys. Acta 1783: 1354–1368

    Article  CAS  PubMed  Google Scholar 

  • Ren S., Guo J., Zeng G. & Sun G. 2006. Decolorization of triphenylmethane, azo, and anthraquinone dyes by a newly isolated Aeromonas hydrophila strain. Appl. Microbiol. Biotech-nol. 72: 1316–1321

    Article  CAS  Google Scholar 

  • Safarik I., Ptackova L. & Safarikova M. 2002. Adsorption of dyes on magnetically labeled baker’s yeast cells. Eur. Cells Mater. 3: 52–55

    Google Scholar 

  • Sudova E., Machova J., Svobodova Z. & Vesely T. 2007. Negative effects of malachite green and possibilities of its replacement in the treatment of fish eggs and fish: a review. Vet. Med. (Praha) 52: 527–539

    Article  CAS  Google Scholar 

  • Vasdev K., Kuhad R.C. & Saxena R.K. 1995. Decolorization of triphenylmethane dyes by the bird’s nest fungus Cyathus bulleri. Curr. Microbiol. 30: 269–272

    Article  Google Scholar 

  • Wang J., Qiao M., Wei K., Ding J., Liu Z., Zhang K.Q. & Huang X. 2011. Decolorizing activity of malachite green and its mechanisms involved in dye biodegradation by Achromobacter xylosoxidans MG1. J. Mol. Microbiol. Biotechnol. 20: 220–227

    Article  CAS  PubMed  Google Scholar 

  • Wu J., Jung B.G., Kim K.S., Lee Y.C. & Sung N.C. 2009. Isolation and characterization of Pseudomonas otitidis WL-13 and its capacity to decolorize triphenylmethane dyes. J. Environ. Sci. 21: 960–964

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to DBT, New Delhi, for funding in the form of DBT-SUK IPLS Program through grant No. BT/PR4572/INF/22/147/2012, SAP-DRS II Program, UGC New Delhi, for infrastructure facility and DSTPURSE program (Grant No.: SR/PURSE/2010) funded by DST, New Delhi, and funds for providing fellowship to one of the authors (SPB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj K. Pawar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biradar, S.P., Rane, N.R., Patil, T.S. et al. Herbal augmentation enhances malachite green biodegradation efficacy of Saccharomyces cerevisiae. Biologia 71, 475–483 (2016). https://doi.org/10.1515/biolog-2016-0069

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2016-0069

Key words

Navigation