Skip to main content
Log in

Production of endoglucanase from Trichoderma reesei RUT C30 and its application in deinking of printed office waste paper

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Media components were optimized using two-step statistical design of experiments for enhancing endoglucanase/carboxymethyl cellulase (CMCase) production by Trichoderma reesei RUT C30. A Placket-Burman design identified cellulose concentration and pH as the most significant variables, which influenced the CMCase activity. Central composite design was employed to optimize these selected parameters. The optimal activity was obtained at cellulose concentration 19.7 g/L and pH of 7.2. Under the optimized conditions, CMCase activity was 83.63 ± 1.86 IU/mL and filter paper activity was 2.58 ± 0.2 filter paper units per mL. Enzyme productivity was higher compared to previous reports. The enzyme produced from T. reesei was concentrated and was evaluated for deinking of printed paper, which demonstrated the suitability of the enzyme for this application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ANOVA:

analysis of variance

CCD:

central composite design

CMC:

carboxymethyl cellulose

CMCase:

carboxymethyl cellulase

CSL:

corn steep liquor

DAHP:

diammonium hydrogenphosphate

DNS:

3′5′-dinitrosalicylic acid

IU:

international unit

References

  • Bajpai P. 2014. Recycling and Deinking of Recovered Paper. Elsevier, Amsterdam.

    Google Scholar 

  • Cherry J.R. & Fidantsef A.L. 2003. Directed evolution of industrial enzymes: an update. Curr. Opin. Biotechnol. 14: 438–443.

    Article  CAS  Google Scholar 

  • de Castro A.M., Ferreira M.C., da Cruz J.C., Rodrigues P.K., Carvalho D.F., Leite S. & Pereira J.N. 2010. High-yield en-doglucanase production by Trichoderma harzianum IOC-3844 cultivated in pretreated sugarcane mill byproduct. Enzyme Res. 2010. 854526.

    PubMed  PubMed Central  Google Scholar 

  • del Castillo E. 2007. Process Optimization: A Statistical Approach. Springer Science, New York.

    Book  Google Scholar 

  • Durand H., Baron M., Calmels T. & Tiraby G. 1998. Classical and molecular genetics applied to Trichoderma reesei for the selection of improved cellulolytic industrial strains, pp. 135–151. In: Aubert J.P., Beguin P. & Millet J. (eds) Biochemistry and Genetics of Cellulose Degradation, FEMS Symposium No. 43. Academic Press, London.

    Google Scholar 

  • El-Gogary S., Leite A., Crivellaro O., El-Dorry H. & Eveleigh D.E. 1990. Trichoderma reesei cellulose - from mutants to induction, pp. 200–211. In: Kubicek C.P., Eveleigh D.E., Esterbauer H., Steiner W., Kubicek-Pranz E.M (eds) Trichoderma reesei Cellulases. Royal Society of Chemistry, Cambridge.

    Google Scholar 

  • Ghose T.K. 1987. Measurement of cellulase activities. Pure Appl. Chem. 59: 257–268.

    Article  CAS  Google Scholar 

  • Gubitz G.M., Mansfield S.D. & Saddler J.N. 1998. Effectiveness of two endoglucanases from Gloeophyllum species in deinking mixed office waste paper, pp. C135–C138. In: Proceedings of The 47th International Conference on Biotechnology of the Pulp and Paper Industry, Montreal.

    Google Scholar 

  • Ibarra D., Concepción Monte M., Blanco A., Martínez A.T. & Martínez M.J. 2012. Enzymatic deinking of secondary fibers: cellulases/hemicellulases versus laccase-mediator system. J. Ind. Microbiol. Biotechnol. 39: 1–9.

    Article  CAS  Google Scholar 

  • Ilmen M., Saloheimo A., Onnela M.L. & Penttilä M.E. 1997. Regulation of cellulase gene expression in the filamentous fungus Trichoderma reesei. Appl. Environ. Microbiol. 63: 1298–306.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jeffries T.W., Klungness J.H., Marguerite S. & Cropsey K.R. 1994. Comparison of enzyme enhanced with conventional deinking of xerographic and laser-printed paper. Tappi J. 77: 17–179.

    Google Scholar 

  • Juhasz T., Szengyel Z., Reczey K. & Viikari L. 2005. Characterization of cellulases and hemicellulases produced by Trichoderma reesei on various carbon sources. Process Biochem. 40: 3519–3525.

    Article  CAS  Google Scholar 

  • Jun H., Bing Y., Keying Z., Xuemei D. & Daiwen C. 2009. Strain improvement of Trichoderma reesei Rut C-30 for increased cellulase production. Indian J. Microbiol. 49: 188–195.

    Article  Google Scholar 

  • Krishna S.H., Rao K.C., Babu J.S. & Reddy D.S. 2000. Studies on the production and application of cellulase from Trichoderma reesei QM- 9414. Bioprocess Biosyst. Eng. 22: 467–470.

    Article  Google Scholar 

  • Kubicek C.P., Mikus M., Schuster A., Schmoll M. & Seiboth B. 2009. Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina. Biotechnol. Biofuels 2. 19.

    Article  Google Scholar 

  • Mandels M. & Weber J. 1969. The production of cellulases. Adv. Chem. 95: 391–413.

    Article  CAS  Google Scholar 

  • Mandels M., Weber J. & Parizek R. 1971. Enhanced cellulase production by a mutant of Trichoderma viride. Appl. Microbiol. 21: 152–154.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Montenecourt B.S. & Eveleigh D.E. 1979. Selective screening methods for the isolation of high yielding cellulase mutants of Trichoderma reesei. Adv. Chem. 181: 289–301.

    Article  Google Scholar 

  • Okada H., Tada K., Sekiya T., Yokoyama K., Takahashi A., To-hda H., Kumagai H. & Morikawa Y. 1998. Molecular characterization and heterologous expression of the gene encoding a low-molecular mass endoglucanase from Trichoderma reesei QM9414. Appl. Environ. Microbiol. 64: 555–563.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Plackett R.L. & Burman J.P. 1946. The design of optimum multifactorial experiments. Biometrika 37: 305–325.

    Article  Google Scholar 

  • Prabavathy V.R., Mathivanan N., Sagadevan E., Murugesan K. & Lalithakumari D. 2006. Intra-strain protoplast fusion enhances carboxymethyl cellulase activity in Trichoderma reesei. Enzyme Microb. Technol. 38: 719–723.

    Article  CAS  Google Scholar 

  • Reese E.T. & Mandels M. 1984. Rolling with the times: production and applications of Trichoderma reesei cellulases. Annu. Rep. Ferm. Proc. 7: 1–20.

    CAS  Google Scholar 

  • Ryu D.D.Y. & Mandels M. 1980. Cellulases: biosynthesis and applications. Enzyme Microb. Technol. 2: 91–102.

    Article  CAS  Google Scholar 

  • Saloheimo M., Lehtovaara P., Penttila M., Teeri T.T., Stahlberg J., Johansson G., Pettersson G., Claeyssens M., Tomme P. & Knowles J.K. 1988. EGIII, a new endoglucanase from Trichoderma reesei: the characterization of both gene and enzyme. Gene 63: 11–22.

    Article  CAS  Google Scholar 

  • Saloheimo M., Nakari- Setala T., Tenkanen M. & Penttila M. 1997. cDNA cloning of a Trichoderma reesei cellulase and demonstration of endoglucanase activity by expression in yeast. Eur. J. Biochem. 249: 584–591.

    Article  CAS  Google Scholar 

  • Sternberg D. 1976. Production of cellulase by Trichoderma. Biotechnology and Bioengineering Symp. 6: 35–53.

    CAS  Google Scholar 

  • Virk A.P., Puri M., Gupta V., Capalash N. & Sharma P. 2013. Combined enzymatic and physical deinking methodology for efficient eco-friendly recycling of old newsprint. PLoS One 8. e72346.

    Article  CAS  Google Scholar 

  • Vyas S. & Lachke A. 2003. Biodeinking of mixed office waste paper by alkaline active cellulases from alkalotolerant Fusarium sp. Enzyme Microb. Technol. 33: 236–245.

    Article  Google Scholar 

  • Wen Z., Liao W., & Chen S. 2005. Production of cellulase by Trichoderma reesei from dairy manure. Bioresour. Technol. 96: 491–499.

    Article  CAS  Google Scholar 

  • Zaldivar M., Velásquez J. C., Contreras I. & María Pérez L. 2001. Trichoderma aureoviride 7-121, a mutant with enhanced production of lytic enzymes: its potential use in waste cellulose degradation and/or biocontrol. Electronic J. Biotechnol. 4. a07.

    Article  Google Scholar 

Download references

Acknowledgements

ASOI gratefully acknowledges the financial assistance provided by Department of Biotechnology (DBT), Government of India, and The World Academy of Sciences for the Advancement of Science in developing countries (TWAS) in the form of fellowship for supporting his PhD program, of which this study forms a part.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev Kumar Sukumaran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Idris, A.S.O., Pandey, A. & Sukumaran, R.K. Production of endoglucanase from Trichoderma reesei RUT C30 and its application in deinking of printed office waste paper. Biologia 71, 265–271 (2016). https://doi.org/10.1515/biolog-2016-0046

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2016-0046

Key words

Navigation