Skip to main content

Advertisement

Log in

Inhibitory effect of Murraya koenigii against Candida albicans virulence and biofilm development

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

In this study, anti-infective potential of the medicinal plant Murraya koenigii was assessed through in vitro assays and microscopic analysis. The methanolic leaf extract of M. koenigii significantly inhibited the major virulence factors of Candida albicans, such as biofilm formation, yeast-to-hyphal transition, cell surface hydrophobicity, hemolysin production and filamentation. Further purification and molecular characterization of the active lead is expected to give a novel anticandidal agent for the treatment of Candida infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CLSM:

confocal laser scanning microscopy

MBIC:

minimum biofilm inhibitory concentration

MKM:

Murraya koenigii methanolic

MTP:

microtiter plate

PBS:

phosphate buffered saline

SDA:

Sabouraud dextrose agar

SEM:

scanning electron microscopy

XTT:

2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide

YEPD:

yeast extract peptone dextrose

References

  • Alcazar-Fuoli L., Mellado E., Garcia-Effron G., Lopez J.F., Grimalt J.O. Cuenca-Estrella J.M. & Rodriguez-Tudela J.L. 2008. Ergosterol biosynthesis pathway in Aspergillus fumigatus. Steroids 73: 339–347.

    Article  CAS  PubMed  Google Scholar 

  • Al-Fattani M.A. & Douglas L.J. 2004. Penetration of Candida biofilms by antifungal agents. Antimicrob. Agents Chemother. 48: 3291–3297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alnuaimi A.D., O’Brien-Simpson N.M., Reynolds E.C. & McCullough M.J. 2013. Clinical isolates and laboratory reference Candida species and strains have varying abilities to form biofilms. FEMS Yeast Res. 13: 689–699.

    Article  CAS  PubMed  Google Scholar 

  • Alshami I. & Alharbi A.E. 2014. Hibiscus sabdariffa extract inhibits in vitro biofilm formation capacity of Candida albicans isolated from recurrent urinary tract infections. Asian Pac. J. Trop. Biomed. 4: 104–108.

    Article  Google Scholar 

  • Arif T., Bhosale J.D., Kumar N., Mandal T.K. & Bendre R.S., Lavekar G.S. & Dabur R. 2009. Natural products-antifungal agents derived from plants. J. Asian Nat. Prod. Res. 11: 621–638.

    Article  CAS  PubMed  Google Scholar 

  • Bakkiyaraj D., Nandhini J.R., Malathy B. & Pandian S.K. 2013. The anti-biofilm potential of pomegranate (Punica granatum L.) extract against human bacterial and fungal pathogens. Biofouling 29: 929–937.

    Article  CAS  PubMed  Google Scholar 

  • Braga P.C., Culici M., Alfieri M. & Dal Sasso M. 2008. Thymol inhibits Candida albicans biofilm formation and mature biofilm. Int. J. Antimicrob. Agents 31: 472–477.

    Article  CAS  PubMed  Google Scholar 

  • Brown D.H., Giusani A.D., Chen X. & Kumamoto C.A. 1999. Filamentous growth of Candida albicans in response to physical environmental cues and its regulation by the unique CZF1 gene. Mol. Microbiol. 34: 651–662.

    Article  CAS  PubMed  Google Scholar 

  • Calderone R.A. & Fonzi W.A. 2001. Virulence factors of Candida albicans. Trends Microbiol. 9: 327–335.

    Article  CAS  PubMed  Google Scholar 

  • Chaieb K., Zmantar T., Ksouri R., Hajlaoui H., Mahdouani K., Abdelly C. & Bakhrouf A. 2007. Antioxidant properties of the essential oil of Eugenia caryophyllata and its antifungal activity against a large number of clinical Candida species. Mycoses 50: 40–406.

    Article  Google Scholar 

  • Chandra J., Kuhn D.M., Mukherjee P.K., Hoyer L.L., McCormick T. & Ghannoum M.A. 2001. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J. Bacteriol. 183: 5385–5394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandra J., Mukherjee P.K & Ghannoum M.A. 2012. Candida biofilms associated with CVC and medical devices. Mycoses 55: 46–57.

    Article  CAS  Google Scholar 

  • Chevalier M., Medioni E. & Precheur I. 2012. Inhibition of Candida albicans yeast-hyphal transition and biofilm formation by Solidago virgaurea water extracts. J. Med. Microbiol. 61: 1016–1022.

    Article  CAS  PubMed  Google Scholar 

  • Cowan M.M. 1999. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 12: 564–582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das K., Tiwari R. K. S. & Shrivastava D. K. 2010. Techniques for evaluation of medicinal plant products as antimicrobial agent: current methods and future trends. J. Med. Plants Res. 4: 104–111.

    Google Scholar 

  • Denning D.W. 2003. Echinocandin antifungal drugs. Lancet 362: 1142–1151.

    Article  CAS  PubMed  Google Scholar 

  • Fan D., Coughlin L.A., Neubauer M.M., Kim J., Kim M.S., Zhan X., Simms- Waldrip T.R., Xie Y., Hooper L.V. & Koh A.Y. 2015. Activation of HIF-1α and LL-37 by commensal bacteria inhibits Candida albicans colonization. Nat. Med. 21: 808–814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghannoum M.A. & Rice L.B. 1999. Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin. Microbiol. Rev. 12: 501–517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inabo H.I. 2006. The significance of Candida infections of medical implants. Sci. Res. Essay 1: 008–010.

    Google Scholar 

  • Kanafani Z.A. & Perfect J.R. 2008. Antimicrobial resistance: resistance to antifungal agents: mechanisms and clinical impact. Clin. Infect. Dis. 46: 120–128.

    Article  PubMed  Google Scholar 

  • Khan M.S. & Ahmad I. 2012. Biofilm inhibition by Cymbopogon citratus and Syzygium aromaticum essential oils in the strains of Candida albicans. J. Ethnopharmacol. 140: 416–423.

    Article  CAS  PubMed  Google Scholar 

  • Lu Y., Su C., Wang A. & Liu. H. 2011. Hyphal development in Candida albicans requires two temporally linked changes in promoter chromatin for initiation and maintenance. PLoS Biol. 9. 1001105.

    Article  CAS  Google Scholar 

  • Mandal S.M., Migliolo L., Franco O.L. & Ghosh A.K. 2011. Identification of an antifungal peptide from Trapa natans fruits with inhibitory effects on Candida tropicalis biofilm formation. Peptides 32: 1741–1747.

    Article  CAS  PubMed  Google Scholar 

  • Manns J.M., Mosser D.M. & Buckley H.R. 1994. Production of a hemolytic factor by Candida albicans. Infect. Immun. 62: 5154–5156.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez J.P., Lopez-Ribot J.L., Gil M.L., Sentandreu R. & Ruiz-Herrera J. 1990. Inhibition of the dimorphic transition of Candida albicans by the ornithine decarboxylase inhibitor 1,4-diaminobutanone: alterations in the glycoprotein composition of the cell wall. J. Gen. Microbiol. 136: 1937–1943.

    Article  CAS  PubMed  Google Scholar 

  • Mathur A., Dua V.K. & Prasad G.B.K.S. 2010. Antimicrobial activity of leaf extracts of Murraya koenigii against aerobic bacteria associated with bovine mastitis. Int. J. Chem. Environ. Pharm. Res. 1: 12–16.

    Google Scholar 

  • Mayer F.L., Wilson D. & Hube B. 2013. Candida albicans pathogenicity mechanisms. Virulence 4: 119–128.

    Article  PubMed  PubMed Central  Google Scholar 

  • Messier C., Epifano F., Genovese S. & Grenier D. 2011. Inhibition of Candida albicans biofilm formation and yeast-hyphal transition by 4-hydroxycordoin. Phytomedicine 18: 380–383.

    Article  CAS  PubMed  Google Scholar 

  • Miller M.G. & Johnson A.D. 2002. White-opaque switching in Candida albicans is controlled by mating-type locus home-odomain proteins and allows efficient mating. Cell 110: 29–302.

    Google Scholar 

  • Mohan S., Abdelwahab S.I., Cheah S.C., Sukari M.A., Syam S., Shamsuddin N. & Mustafa M.R. 2013. Apoptosis effect of girinimbine isolated from Murraya koenigii on lung cancer cells in vitro. Evid. Based Complement. Alternat. Med. 2013. 689865.

    Article  PubMed  PubMed Central  Google Scholar 

  • Morales D.K., Grahl N., Okegbe C., Dietrich L.E., Jacobs N.J. & Hogana D.A. 2013. Control of Candida albicans metabolism and biofilm formation by Pseudomonas aeruginosa phenazines. MBio 4. e00526–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrell M., Fraser V.J. & Kollef M.H. 2005. Delaying the empiric treatment of candida bloodstream infection until positive blood culture results are obtained: a potential risk factor for hospital mortality. Antimicrob. Agents Chemother. 49: 3640–3645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Motsei M.L., Lindsey K.L., van Staden J. & Jager A.K. 2003. Screening of traditionally used South African plants for anti-fungal activity against Candida albicans. J. Ethnopharmacol. 86: 235–241.

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee P.K., Chandra J., Kuhn D.M. & Ghannoum M.A. 2003. Mechanism of fluconazole resistance in Candida albicans biofilms: phase-specific role of efflux pumps and membrane sterols. Infect. Immun. 71: 433–4340.

    Article  CAS  Google Scholar 

  • Nadeem S.G., Shafiq A., Hakim S.T., Anjum Y. & Kazm S.U. 2013. Effect of growth media, pH and temperature on yeast-to-hyphal transition in Candida albicans. Open J. Med. Microbiol. 3: 185–192.

    Article  CAS  Google Scholar 

  • Nithyanand P., Beema Shafreen R.M., Muthamil S. & Pandian S.K. 2015. Usnic acid inhibits biofilm formation and virulent morphological traits of Candida albicans. Microbiol. Res. 179: 20–28.

    Article  CAS  PubMed  Google Scholar 

  • Odds F.C. 1988. Activity of cilofungin (LY121019) against Candida species in vitro. J. Antimicrob. Chemother. 22: 891–897.

    Article  CAS  PubMed  Google Scholar 

  • Onyewu C., Blankenship J.R., Del Poeta M. & Heitman J. 2003. Ergosterol biosynthesis inhibitors become fungicidal when combined with calcineurin inhibitors against Candida albicans, Candida glabrata, and Candida krusei. Antimicrob. Agents Chemother. 47: 956–964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padmavathi A.R., Bakkiyaraj D., Thajuddin N. & Pandian S.K. 2015. Effect of 2,4-di-tert-butylphenol on growth and biofilm formation by an opportunistic fungus Candida albicans. Biofouling 31: 565–574.

    Article  CAS  PubMed  Google Scholar 

  • Pfaller M.A. & Diekema D.J. 2004. Rare and emerging opportunistic fungal pathogens: concern for resistance beyond Candida albicans and Aspergillus fumigatus. J. Clin. Microbiol. 42: 4419–4431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfaller M.A. 2012. Antifungal drug resistance: mechanisms, epidemiology, and consequences for treatment. Am. J. Med. 12. (Suppl. 1): S3–S13.

    Article  CAS  Google Scholar 

  • Pinto E., Vale-Silva L., Cavaleiro C. & Salgueiro L. 2009. Antifungal activity of the clove essential oil from Syzygium aromaticum on Candida, Aspergillus and dermatophyte species. J. Med. Microbiol. 58: 1454–1462.

    Article  PubMed  Google Scholar 

  • Rahman M.M. & Gray A.I. 2005. A benzoisofuranone derivative and carbazole alkaloids from Murraya koenigii and their antimicrobial activity. Phytochemistry 66: 1601–1606.

    Article  CAS  PubMed  Google Scholar 

  • Ramage G., Saville S.P., Thomas D.P. & Lopez-Ribot J.L. 2005. Candida biofilms: an update. Eukaryot. Cell 4: 63–638.

    Article  CAS  Google Scholar 

  • Rasmussen T.B. & Givskov M. 2006. Quorum-sensing inhibitors as anti-pathogenic drugs. Int. J. Med. Microbiol. 296: 149–161.

    Article  CAS  PubMed  Google Scholar 

  • Raut J.S., Chauhan N.M., Shinde R.B. & Karuppayil S.M. 2013a. Inhibition of planktonic and biofilm growth of Candida albicans reveals novel antifungal activity of caffeine. J. Med. Plants Res. 7: 777–782.

    Google Scholar 

  • Raut J.S., Shinde R.B., Chauhan N.M. & Karuppayil S.M. 2013b. Terpenoids of plant origin inhibit morphogenesis, adhesion, and biofilm formation by Candida albicans. Biofouling 29: 87–96.

    Article  CAS  PubMed  Google Scholar 

  • Reena T., Prem R., Deepthi M.S., Ramachanran R.B. & Sujatha S. 2013. Comparative effect of natural commodities and commercial medicines against oral thrush causing fungal organism of Candida albicans. Sci. J. Clin. Med. 2: 75–80.

    Article  Google Scholar 

  • Rossoni R.D., Barbosa J.O., Vilela S.F., Jorge A.O. & Junqueira J.C. 2012. Comparison of the hemolytic activity between Candida albicans and non-albicans Candida species. Braz. Oral Res. 27: 484–489.

    Article  Google Scholar 

  • Salini R. & Pandian S.K. 2015. Interference of quorum sensing in urinary pathogen Serratia marcescens by Anethum graveolens. Pathog. Dis. 73. ftv038.

    Article  PubMed  CAS  Google Scholar 

  • Salini R., Sindhulakshmi M., Poongothai T. & Pandian S.K. 2015. Inhibition of quorum sensing mediated biofilm development and virulence in uropathogens by Hyptis suaveolens. Antonie Van Leeuwenhoek 107: 1095–1106.

    Article  CAS  PubMed  Google Scholar 

  • Sanguinetti M., Posteraroz B. & Lass-Florl C. 2015. Antifun-gal drug resistance among Candida species: mechanisms and clinical impact. Mycoses 58: 2–13.

    Article  PubMed  Google Scholar 

  • Selvamani S. & Balamurugan S. 2014. Evaluation of the antimicrobial potential of various solvent extracts of Murraya koenigii (Linn.) Spreng leaves. Int. J. Curr. Microbiol. App. Sci. 3: 74–77.

    Google Scholar 

  • Shafreen R.M., Muthamil S. & Pandian S.K. 2014. Inhibition of Candida albicans virulence factors by novel levofloxacin derivatives. Appl. Microbiol. Biotechnol. 98: 6775–6785.

    Article  CAS  PubMed  Google Scholar 

  • Si H., Hernday A.D., Hirakawa M.P., Johnson A.D. & Bennett R.J. 2013. Candida albicans white and opaque cells undergo distinct programs of filamentous growth. PLoS Pathog. 9. e1003210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sivasankar C., Ponmalar A., Bhaskar J.P. & Pandian S.K. 2015. Glutathione as a promising anti-hydrophobicity agent against Malassezia spp. Mycoses 58: 620–631.

    Article  CAS  PubMed  Google Scholar 

  • Soll D.R. 2008. Candida biofilms: is adhesion sexy? Curr. Biol. 18. R717–R720.

    Article  CAS  PubMed  Google Scholar 

  • Subramenium G.A., Vijayakumar K. & Pandian S.K. 2015a. Limonene inhibits streptococcal biofilm formation by targeting surface-associated virulence factors. J. Med. Microbiol. 64: 879–890.

    Article  CAS  PubMed  Google Scholar 

  • Subramenium GA., Viszwapriya D., Iyer P.M., Balamurugan K. & Pandian S.K. 2015b. covR mediated antibiofilm activity of 3-furancarboxaldehyde increases the virulence of Group A Streptococcus. PLoS One 10. e0127210.

    Article  CAS  Google Scholar 

  • Taweechaisupapong S., Ngaonee P., Patsuk P., Pitiphat W. & Khunkitti W. 2012. Antibiofilm activity and post antifungal effect of lemongrass oil on clinical Candida dubliniensis isolate. South Afr. J. Bot. 78: 37–43.

    Article  CAS  Google Scholar 

  • Tsang P.W., Wong A.P., Yang H.P. & Li N.F. 2013. Purpurin triggers caspase-independent apoptosis in Candida dubliniensis biofilms. PLoS One 8. e86032.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vediyappan G., Dumontet V., Pelissier F. & d’Enfert C. 2013. Gymnemic acids inhibit hyphal growth and virulence in Candida albicans. PLoS One 8. e74189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y.L. 2003. Virulence factors of Candida species. J. Microbiol. Immunol. Infect. 36: 22–228.

    Google Scholar 

Download references

Acknowledgements

The authors thankfully acknowledge the Bioinformatics Infrastructure Facility funded by Department of Biotechnology, Government of India [Grant No. BT/BI/25/015/2012 (BIF)], the instrumentation facility provided by Department of Science and Technology, Government of India through PURSE [Grant No. SR/S9Z-23/2010/42 (G)] & FIST (Grant No. SR-FST/LSI-087/2008), and University Grants Commission (UGC), New Delhi, through SAP-DRS1 [Grant No. F.3-28/2011 (SAP-II)]. SM thanks UGC for financial assistance in the form of a Basic Scientific Research Fellowship [Sanction No. F.25-1/2013-14 (BSR)/7-326/2011 (BSR) dt 30.05.2014].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunmugiah Karutha Pandian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthamil, S., Pandian, S.K. Inhibitory effect of Murraya koenigii against Candida albicans virulence and biofilm development. Biologia 71, 256–264 (2016). https://doi.org/10.1515/biolog-2016-0044

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2016-0044

Key words

Navigation