Skip to main content

Advertisement

Log in

Comparison of earthworm populations in arable and grassland fields in the Outer Western Carpathians, South Poland

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The impact of different geographical regions (Silesian Foothills, region 1 and Mały Beskids, region 2), and method of soil use (arable field and grassland) on the main soil properties and biological activity was studied. Earthworm biomass, density and diversity, as well as dehydrogenase activity, were analysed. Significant soil physical and chemical properties were more affected by regions, whereas the type of land use had a greater impact on the biological properties. The mean earthworm density was 213 ind. m−2 and 241 ind. m−2 in grassland, and 50 ind. m−2 and 120 ind. m−2 in arable field, in region 1 and 2, respectively. Eight earthworm species were recorded, and fewer species were recorded in arable field (1–4) than in grassland (6–7). The Silesian Foothills are a new habitat for the occurrence of the species Fitzingeria platyura depressa. A high earthworm density was accompanied by high microbial activity, and dehydrogenase activity was lower in the soil of arable field than in grassland soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blake G.R. & Hartge K.H. 1986. Particle density, Chapter 14. pp. 377–382. DOI: 10.2136/sssabookser5.1.2ed.c14. In: Klute A. (ed.), Methods of Soil Analysis, Part 1. Physical and Miner-alogical Methods. 2nd ed. Series Agronomy, Number 9 (Part 1), SSSA Book Series 5. American Society of Agronomy, Madison, Wisconsin, USA, 118. pp. ISBN-13: 978-0.89118-811-7, ISBN-10: 0-89118.811-8

    Google Scholar 

  • Bongers T. & Ferris H. 1999. Nematode community structure as a bioindicator in environmental monitoring. Trends Ecol. Evol. 14 (6): 224–228. DOI: doi:10.1016/S0169-5347(98)01583-3

    Article  CAS  Google Scholar 

  • Brito-Vega H., Espinosa-Victoria D., Fragoso C., Mendoza D., De la Cruz Landero N. & AldereteChavez A. 2009. Soil organic matter particle and presence of earthworm under different tillage systems. J. Biol. Sci. 9 (2): 180–183. DOI: 10.3923/jbs.2009.180.183

    Article  CAS  Google Scholar 

  • Brookes P.C. 1995. The use of microbial parameters in monitoring soil pollution by heavy metals. Biol. Fertil. Soils 19 (4): 269–279. DOI: 10.1007/BF00336094

    Article  CAS  Google Scholar 

  • Brzezińska M. & Włodarczyk T. 2006. Methods of soil catalase and dehydrogenase activity measurement, pp. 59–74. In: Russel S., Wyczółkowski A.I. & Bieganowski A. (eds), Selected Methodological Aspects of Soil Enzyme Activity Tests, IA PAS, Lublin. 7. pp. ISBN-10: 8-89969-70-X, ISBN-13: 978-83.89969-70-5

    Google Scholar 

  • Casida L.E.J., Klein D.A. & Santoro T. 1964. Soil dehydrogenase activity. Soil Sci. 98 (6): 371–376.

    Article  CAS  Google Scholar 

  • Ciarkowska K., Solek-Podwika K. & Wieczorek J. 2014. Enzyme activity as an indicator of soil-rehabilitation processes at a zinc and lead ore mining and processing region. J. Environ. Manage. 132: 250–256. DOI: 10.1016/j.jenvman.2013.10.022

    Google Scholar 

  • Csuzdi C, Pop V. & Pop A. 2011. The earthworm fauna of the Carpathian Basin with new records and description of three new species (Oligochaeta: Lumbricidae). Zool. Anz. 250 (1): 2–18. DOI: 10.1016/j.jcz.2010.10.001

    Article  Google Scholar 

  • Curry J.P. 2004. Factors affecting the abundance of earthworms in soils, Chapter 6. pp. 91-113. In: Edwards CA. (ed.), Earthworm Ecology, 2 ed., CRC Press LLC, Boca Raton, 44. pp. ISBN: 0-8493-1819-X

    Google Scholar 

  • de Vries F.T., Thébault E., Liiri M., Birkhofer K., Tsiafouli M.A., Bjørnlund L., Jørgensen H.B., Brady M.V., Christensen S., de Ruiter P.C., d’Hertefeldt T., Frouz J., Hedlund K., Hemerik L., Hol W.H.G., Hotes S., Mortimer S.R., Setälä H., Sgardelis S.P., Uteseny K., van der Putten W., Wolters V. & Bardgett R.D. 2013. Soil food web properties explain ecosystem services across European land use systems. Proc. Natl. Acad. Sci. USA 110 (35): 14296–14301. DOI: 10.1073/pnas. 1305198110

    Article  Google Scholar 

  • Dick R.P., Breakwell D.P. & Turco R. F. 1996. Soil enzyme activities and biodiversity measurements as integrative microbiological indicators, Chapter 15. pp. 247–271. DOI: 10.2136/ss-saspecpub49.c15. In: Doran J.W. & Jones A.J. (eds), Methods for Assessing Soil Quality, Soil Science Society of America, Spec. Publ. 49. Madison, Wisconsin, 41. pp. ISBN: 0-89118-826-6

    Google Scholar 

  • Edwards CA. (ed.) 2004. Earthworm Ecology. CRC Press, Boca Raton, Fl, /456 pp. ISBN: 9780849318191

    Google Scholar 

  • Edwards CA. & Bohlen P.J. 1996. The Biology and Ecology of Earthworms. Publ. Chapman and Hall, London, 42. pp. ISBN: 0412561603. 9780412561603

    Google Scholar 

  • Gormsen D., Hedlund K., Korthals G.W., Mortimer S.R., Pižl V., Smilauerova M. & Sugg E. 2004. Management of plant communities on set-aside land and its effects on earthworm communities. Eur. J. Soil Biol. 4 (3-4): 123–128. DOI: 10.1016/j.ejsobi.2004.08.001

    Article  Google Scholar 

  • Ivask M., Kuu A., Meriste M., Truu J., Truu M. & Vaater V. 2008. Invertebrate communities (Annelida and epigeic fauna) in three types of Estonian cultivated soils. Eur. J. Soil Biol. 4 (5-6): 532–540. DOI: 10.1016/j.ejsobi.2008.09.005

    Article  Google Scholar 

  • Kasprzak K. 1986. Skaposzczety glebowe III, Rodzina: Dżdżownice (Lumbricidae). Series: Klucze do oznaczania bezkręgowców Polski, tom 6. PAN, Warszawa, 18. pp. ISBN: 8301061677. 9788301061678

    Google Scholar 

  • Kasprzak K. 1989. Zoogeography and habitat distribution of earthworms (Lumbricidae) and enchytraeids (Enchytraeidae) of the Carpathian Mountains (Poland). Misc. Zool. 13: 37–44.

    Google Scholar 

  • Kladivko E.J. 2001. Tillage system and soil ecology. Soil Till. Res. 61: 61–76.

    Article  Google Scholar 

  • Klute A. & Dirksen C. 1986. Water retention. Laboratory methods, Chapter 26. pp. 635-662. DOI: 10.2136/sssabookser5.1.2ed.c26. In: Klute A. (ed.), Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods, 2nd ed., series Agronomy, Number 9 (Part 1), SSSA Book Series 5. American Society of Agronomy, Madison, Wisconsin, USA, 118. pp. ISBN-13: 978-0.89118-811-7, ISBN-10: 0-89118.811-8

    Google Scholar 

  • Kostecka J. & Skoczeń S. 1993. Earthworm (Oligochaeta: Lumbricidae) populations in four types of beech wood Fagetum carpaticum in the Bieszczady National Park (south-eastern Poland). Part I. Species composition, diversity, dominance, frequency and associations. Acta Zool. Cracov. 36 (1): 1–13. ISBN: 83-900337-8-X

    Google Scholar 

  • Lee K.E. 1985. Earthworms their Ecology and Relationships With Soils and Land Use. Academic Press, Sydney, 41. pp. ISBN: 0124408605. 9780124408609

    Google Scholar 

  • Monroy F., Aira M., Dominguez J. & Velando A., 2006. Seasonal population dynamics of Eisenia fetida (Savigny, 1826. (Oligochaeta, Lumbricidae) in the field. Compt. Rend. Biol. 329 (11): 912–915. DOI: 10.1016/j.crvi.2006.08.001

    Article  Google Scholar 

  • Ouellet G., Lapen D.R., Topp E., Sawada M. & Edwards M. 2008. A heuristic model to predict earthworm biomass in agroe-cosystems based on selected management and soil properties. Appl. Soil Ecol. 39 (1): 35–45. DOI: 10.1016/j.apsoil.2007.11. 003

    Article  Google Scholar 

  • Paoletti M.G. 1999. The role of earthworms for assessment of sustainability and as bioindicators. Agr. Ecosyst. Environ. 7 (1-3): 137–155. DOI: 10.1016/S0167-8809(99)00034-1

    Article  Google Scholar 

  • Pelosi C., Pey B., Hedde M., Caro G., Capowiez Y., Guernion M., Peigné J., Piron D., Bertrand M. & Cluzeau D. 2014. Reducing tillage in cultivated fields increases earthworm functional diversity. Appl. Soil Ecol. 83: 79–87. DOI: 10.1016/j.apsoil.2013.10.005

    Article  Google Scholar 

  • Pižl V. 2002. Žížaly České republiky [Earthworms of the Czech Republic]. Monografické č. seriálu: Sborník přírodovědného klubu v Uherském Hradišti. Supplementum 9. 154 pp. ISBN: 80-86485-04-8

    Google Scholar 

  • Pižl V. & Stary J. 2001. The effects of mountains meadow management on soil fauna communities (on example of earthworms and oribatid mites). Silva Gabreta 7: 87–96.

    Google Scholar 

  • Plisko D.J. 1973. Lumbricidae — Dżdżownice (Annelida: Oligochaeta) Fauna Polski - Fauna Poloniae 1. PWN, Warszawa, 15. pp.

    Google Scholar 

  • Postma-Blaauw M.B., de Goede R.G.M., Bloem J., Faber J.H. & Brussaard L. 2012. Agricultural intensification and deintensification differentially affect taxonomic diversity of predatory mites, earthworms, enchytraeids, nematodes and bacteria. Appl. Soil Ecol. 57: 39–49. DOI: 10.1016/j.apsoil. 2012.02.011

    Article  Google Scholar 

  • Pulleman M., Creamer R., Hamer U., Helder J., Pelosi C., Pérés G. & Rutgers M. 2012. Soil biodiversity, biological indicators and soil ecosystem services-an overview of European approaches. Curr. Opin. Environ. Sustain. 4 (5): 529–538. DOI: 10.1016/j.cosust.2012.10.009

    Article  Google Scholar 

  • Römbke J., Jänsch S. & Didden W. 2005. The use of earthworms in ecological soil classification and assessment concepts. Ecotoxicol. Environ. Safe. 62 (2): 249–265. DOI: 10.1016/j.ecoenv.2005.03.027

    Article  Google Scholar 

  • Rożen A. 1982. The annual cycle in populations of earthworms (Lumbricidae, Oligochaeta) in three types of oak-hornbeam of the Niepolomicka Forest. I. Species composition, dominance, frequency and associations. Pedobiologia 23: 199–208.

    Google Scholar 

  • European Union’s European Agricultural Fund 2015. The Rural Development Programme (RDP), 2014-2020. [Program Roz-woju Obszarów Wiejskich na lata 201-202. (PROW 2014-2020)] http://www.minrol.gov.pl/ (accessed 26.01.2015).

    Google Scholar 

  • Schmidt O. 2001. Time limited hand sorting for long-term monitoring of Earthworm populations. Pedobiologia 45 (1): 69–83. DOI: 10.1078/0031-4056-00069

    Article  Google Scholar 

  • Skiba S. 2008. Some problems of the soil classification of the Carpathian mountain soils. Gruntoznavstvo / Soil Science 9 (3-4): 165–168.

    Google Scholar 

  • van Eekeren N., Bommele L., Bloem J., Schouten T., Rutgers M., de Goede R., Reheul D. & Brussaard L. 2008. Soil biological quality after 3. years of ley-arable cropping, permanent grassland and permanent arable cropping. Appl. Soil Ecol. 40 (3): 432–446. DOI: 10.1016/j.apsoil.2008.06.010

    Article  Google Scholar 

  • WRB 2014. World Reference Base for Soil Resources 2014. International soil classification system for naming soils and creating legends for soil maps. Update 2015. In: World Soil Resources Reports 106. FAO, 2014. 192 pp. ISBN: 978-92-5-108369-7

    Google Scholar 

Download references

Acknowledgements

The study was supported by the Ministry of Science and Higher Education, Poland, under grant No. N N310 780640.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Józefowska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Józefowska, A., Miechówka, A. & Frouz, J. Comparison of earthworm populations in arable and grassland fields in the Outer Western Carpathians, South Poland. Biologia 71, 316–322 (2016). https://doi.org/10.1515/biolog-2016-0035

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2016-0035

Key words

Navigation