Skip to main content

Advertisement

Log in

A conceptual model of new hypothesis on the evolution of biodiversity

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The mechanisms that allow species to evolve, coexist, compete, cooperate or become extinct are becoming always more understood. At the same time, the factors that allow species to coexist in a given time within the same environment are still debated. Many theories and hypotheses suggest that competition tends to differentiate the ecological requirements after repeated interactions and to allow the presence of many different species in the same area (i.e. biodiversity). After all, a thorough understanding of the evolutionary dynamics of biodiversity, which could somehow explain the current distribution patterns and mechanisms of coexistence, must consider the biogeographic and phylogenetic approaches. Here I propose a new graphic model that reviews the past and present, and sometimes debated, trends in biodiversity and evolutionary science, pointing out the importance of the avoidance of competition, the biological history, the endogenosymbiosis and the three-dimensionality as the main forces that structure ecosystems and allow the evolution of biological diversity. This model is an attempt to explain and summarize some of the mechanisms that underlie the current presence of the awesome number of species that currently inhabit our planet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barraclough T.G. 2015. How do species interactions affect evolutionary dynamics across whole communities? Annu. Rev. Ecol. Evol. Syst. 46: 25–48. DOI: 10.1146/annurev-ecolsys-112414-054030

    Article  Google Scholar 

  • Barton N.H. & Charlesworth B. 1984. Genetic revolutions, founder effects, and speciation. Annu. Rev. Ecol. Evol. Syst. 15: 13–164. DOI: 10.1146/annurev.es.15.110184.001025

    Article  Google Scholar 

  • Bertalanffy L. von 1934. Untersuchungen über die Gesetzlichkeit des Wachstums. I. Allgemeine Grundlagen der Theorie; mathematische und physiologische Gesetzlichkeiten des Wachstums bei Wassertieren. Wilhelm Roux’ Archiv für Entwicklungsmechanik der Organismen 131 (4): 613–652. DOI: 10.1007/BF00650112

    Article  Google Scholar 

  • Bertalanffy L. von 1969. General System Theory: Foundations, Development, Applications. George Braziller, New York, xvi + 28. pp.

    Google Scholar 

  • Bolnick D.I. & Fitzpatrick B.M. 2007. Sympatric speciation: models and empirical evidence. Annu. Rev. Ecol. Evol. Syst. 38: 459–487. DOI: 10.1146/annurev.ecolsys.38.091206.095 804

    Article  Google Scholar 

  • Branch G.M. 1975. Mechanisms reducing intraspecific competition in Patella spp.: migration, differentiation and territorial behaviour. J. Anim. Ecol. 44 (2): 575–600. DOI: 10.2307/3612

    Article  Google Scholar 

  • Bruno J.F., Stachowicz J.J. & Bertness M.D. 2003. Inclusion of facilitation into ecological theory. Trends Ecol. Evol. 18 (3): 119–125. DOI: 10.1016/S0169-5347(02)00045-9

    Article  Google Scholar 

  • Cazzolla Gatti R.C. 2011. Evolution is a cooperative process: the biodiversity-related niches differentiation theory (BNDT) can explain why. Theoretical Biology Forum 104 (1): 35–43. PMID: 22220353

    Google Scholar 

  • Cazzolla Gatti R. 2012. Biodiversity is a cauliflower under the sunlight. Nature Preceedings, precedings.nature.com. DOI: http://hdl.handle.net/10101/npre.2012.6917.1

    Google Scholar 

  • Cazzolla Gatti R.C. 2014. Biodiversitá. In teoria e in pratica. I edizione ottobre 201. - Libreria Universitaria it Edizioni [Biodiversity. In theory and in practice. 1st ed. October 2014]. Padova (Italy), 35. pp. ISBN: 978-88-6292-536-5

    Google Scholar 

  • Chesson P. 2000. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Evol. Syst. 31: 34–366. DOI: 10.1146/annurev.ecolsys.31.1.343

    Article  Google Scholar 

  • Connell J.H. 1980. Diversity and the coevolution of competitors, or the ghost of competition past. Oikos 35 (2): 131–138. DOI: 10.2307/3544421

    Article  Google Scholar 

  • Courtillot V. & Gaudemer Y. 1996. Effects of mass extinctions on biodiversity. Nature 381: 146–148. DOI: 10.1038/381146a0

    Article  CAS  Google Scholar 

  • Darwin C. 1859. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life (1st ed.). John Murray, London (UK), 50. pp.

    Book  Google Scholar 

  • Darwin C. & Wallace A.R. 1858. On the Tendency of Species to form Varieties; and on the Perpetuation of Varieties and Species by Natural Means of Selection. Zoological Journal of the Linnean Society 3: 46–50. DOI: 10.1111/j.1096-3642.1858.tb02500.x

    Google Scholar 

  • Didham R.K., Tylianakis J.M., Hutchison M.A., Ewers R.M. & Gemmell N.J. 2005. Are invasive species the drivers of ecological change? Trends Ecol. Evol. 20 (9): 470–474. DOI: 10.1016/j.tree.2005.07.006

    Article  PubMed  Google Scholar 

  • Durant S.M. 2000. Living with the enemy: avoidance of hyenas and lions by cheetahs in the Serengeti. Behav. Ecol. 11 (6): 624–632. DOI: 10.1093/beheco/11.6.624

    Article  Google Scholar 

  • Eldredge N. & Gould S.J. 1972. Punctuated equilibria: an alternative to phyletic gradualism, pp. 82–115. In: Schopf T.J.M. (ed.), Models in Paleobiology, Freeman, Cooper & Co., San Francisco, 25. pp. ISBN-10: 0877353255. ISBN-13: 978-087735325.

    Google Scholar 

  • Erwin D.H. 2001. Lessons from the past: biotic recoveries from mass extinctions. Proc. Natl. Acad. Sci. 98 (10): 5399–5403. DOI: 10.1073/pnas.091092698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felsenstein J. 1981. Skepticism towards Santa Rosalia, or why are there so few kinds of animals? Evolution 35 (1): 124–138.

    Article  PubMed  Google Scholar 

  • Forsey G.F. 2013. Fossil evidence for the escalation and origin of marine mutualisms. J. Nat. Hist. 4. (25-28): 1833–1864. DOI: 10.1080/00222933.2013.766276

    Article  Google Scholar 

  • Gause G.F. 1934. The Struggle for Existence. Hafner Publishing Company, New York (USA), 16. pp.

    Book  Google Scholar 

  • Gavrilets S. & Losos J.B. 2009. Adaptive radiation: contrasting theory with data. Science 323 (5915): 732–737. DOI: 10.1126/science.1157966.

    Article  CAS  PubMed  Google Scholar 

  • Generoso W., Shelby M.D. & de Serres F.J. (eds) 1980. DNA Repair and Mutagenesis in Eukaryotes (Vol. 15). Springer Science & Business Media, Germany. 45. pp. ISBN: 978-1-4684-3844-4

    Google Scholar 

  • Gorur G., Dickinson H. & Antonovics J. 1973. Theoretical considerations of sympatric divergence. Am Nat. 107 (954): 256–274. DOI: 10.1086/282829

    Article  Google Scholar 

  • Gurevitch J. & Padilla D.K. 2004. Are invasive species a major cause of extinctions?. Trends Ecol. Evol. 19 (9): 470–474. DOI: 10.1016/j.tree.2004.07.005

    Article  PubMed  Google Scholar 

  • Hamilton W.D. 2002. Narrow Roads of Gene Land. Vol. 2. Evolution of Sex. Oxford Univ. Press, Oxford, UK, 92. pp. ISBN-10: 0198503369. ISBN-13: 978–019850336.

    Google Scholar 

  • Hardin G. 1960. The competitive exclusion principle. Science 131 (3409): 1292–1297. DOI: 10.1126/science.131.3409.1292

    Article  CAS  PubMed  Google Scholar 

  • Holmes E.E., Lewis M.A., Banks J.E. & Veit R.R. 1994. Partial differential equations in ecology: spatial interactions and population dynamics. Ecology 75 (1): 17–29. DOI: 10.2307/1939378

    Article  Google Scholar 

  • Hubbell S. 1980. Seed predation and the coexistence of tree species in tropical forests. Oikos 35 (2): 214–229. DOI: 10.2307/3544429

    Article  Google Scholar 

  • Hubbell S.P. 2001. The Unified Neutral Theory of Biodiversity and Biogeography (MPB-32). Vol. 32. Princeton University Press (USA). 39. pp. ISBN: 9780691021287

    Google Scholar 

  • Hubert N., Calcagno V., Etienne R.S. & Mouquet N. 2015. Metacommunity speciation models and their implications for diversification theory. Ecol. Lett. 18 (8): 864–881. DOI: 10.1111/ele.12458

    Article  PubMed  Google Scholar 

  • Hutchinson G.E. 1961. The paradox of plankton. Am. Nat. 9 (882): 137–146. DOI: 10.1086/282171

    Article  Google Scholar 

  • Jackson J.B.C. & Johnson K.G. 2001. Measuring past biodiversity. Science 293 (5539): 2401–2403. DOI: 10.1126/science.1063789

    Article  CAS  PubMed  Google Scholar 

  • Kirkpatrick M. & Ravigne V. 2002. Speciation by natural and sexual selection: Models and experiments. Am. Nat. 15 (S3): S22–S35. DOI: 10.1086/338370

    Article  Google Scholar 

  • Kottelat M. 1995. Systematic studies and biodiversity: the need for a pragmatic approach. J. Nat. Hist. 29 (3): 565–569. DOI: 10.1080/00222939500770181

    Article  Google Scholar 

  • Lambin X., Aars J. & Piertney S.B. 2001. Dispersal, intraspecific competition, kin competition and kin facilitation: a review of the empirical evidence. Part 2. pp. 110–122. In: Clobert J., Danchin E., Dhondt A.A. & Nichols J.D. (eds), Dispersal, Oxford University Press, Oxford, 48. pp. ISBN-10: 0198506597. ISBN-13: 9780198506591

  • Levene H. 1953. Genetic equilibrium when more than one ecological niche is available. Am. Nat. 87 (836): 331–333. DOI: 10.1086/281792

    Article  Google Scholar 

  • Levine J.M. & HilleRisLambers J. 2009. The importance of niches for the maintenance of species diversity. Nature 461: 254–257. DOI: 10.1038/nature08251

    Article  CAS  PubMed  Google Scholar 

  • MacArthur R.H. & Wilson E.O. 1967. The Theory of Island Biogeography. Vol. 1. Princeton University Press (USA), 20. pp. ISBN: 0691088365. 9780691088365

  • Margulis L. & Sagan D. 2008. Acquiring Genomes: A Theory of the Origins of Species. Basic Books (USA), 25. pp. ISBN: 0786722606. 9780786722600

    Google Scholar 

  • Maynard Smith J. 1966. Sympatric speciation. Am. Nat. 100 (916): 637–650. DOI: 10.1086/282457

    Article  Google Scholar 

  • McCann K.S. 2000. The diversity-stability debate. Nature 405 (6783): 228–233. DOI: 10.1038/35012234

    Article  CAS  PubMed  Google Scholar 

  • Meyerson L.A. & Mooney H.A. 2007. Invasive alien species in an era of globalization. Front. Ecol. Environ. 5 (4): 199–208. DOI: 10.1890/1540-9295(2007)5[199:IASIAE]2.0.CO;2

    Article  Google Scholar 

  • Nowak M.A., Tarnita C.E. & Wilson E.O. 2010. The evolution of eusociality. Nature 466 (7310): 1057–1062. DOI: 10.1038/nature09205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nuismer S.L. & Harmon L.J. 2015. Predicting rates of interspecific interaction from phylogenetic trees. Ecol. Lett. 18 (1): 17–28. DOI: 10.1111/ele.12384

    Article  PubMed  Google Scholar 

  • Pilkey O.H. & Pilkey-Jarvis L. 2007. Useless Arithmetic: Why Environmental Scientists can’t Predict the Future. Columbia University Press (USA), 24. pp. ISBN: 9780231506991

    Google Scholar 

  • Platnick N.I. 1991. Patterns of biodiversity: tropical vs temperate. J. Nat. Hist. 25 (5): 1083–1088. DOI: 10.1080/0022293 9100770701

    Article  Google Scholar 

  • Purvis A. & Hector A. 2000. Getting the measure of biodiversity. Nature 405 (6783): 212–219. DOI: 10.1038/35012221

    Article  CAS  PubMed  Google Scholar 

  • Raxworthy C.J., Ingram C., Rabibisoa N. & Pearson R.G. 2007. Applications of ecological niche modeling for species delimitation: a review and empirical evaluation using day geckos (Phelsuma) from Madagascar. Syst. Biol. 56 (6): 907–923. DOI: 10.1080/10635150701775111

    Article  PubMed  Google Scholar 

  • Richardson J.L., Urban M.C., Bolnick D.I. & Skelly D.K. 2014. Microgeographic adaptation and the spatial scale of evolution. Trends Ecol. Evol. 29 (3): 165–176. DOI: 10.1016/j.tree.2014.01.002

    Article  PubMed  Google Scholar 

  • Rissler L.J. & Apodaca J.J. 2007. Adding more ecology into species delimitation: ecological niche models and phylogeog-raphy help define cryptic species in the black salamander (Aneides flavipunctatus). Syst. Biol. 56 (6): 924–942. DOI: 10.1080/10635150701703063

    Article  PubMed  Google Scholar 

  • Sachs J.L., Mueller U.G., Wilcox T.P. & Bull J.J. 2004. The evolution of cooperation. Q. Rev. Biol. 79 (2): 135–160. DOI: 10.1086/386571

    Article  PubMed  Google Scholar 

  • Sagan L. 1967. On the origin of mitosing cells. J. Theor. Biol. 14 (3): 255–274. DOI: 10.1016/0022-5193(67)90079-3

    Article  CAS  PubMed  Google Scholar 

  • Seehausen O., Butlin R.K., Keller I., Wagner C.E., Boughman J.W., Hohenlohe P.A., Peichel C.L., Saetre G.P., Bank C., Brännström A., Brelsford A., Clarkson C.S., Eroukhmanoff F., Feder J.L., Fischer M.C., Foote A.D., Franchini P., Jiggins C.D., Jones F.C., Lindholm A.K., Lucek K., Maan M.E., Marques D.A., Martin S.H., Matthews B., Meier J.I., Möst M., Nachman M.W., Nonaka E., Rennison D.J., Schwarzer J., Watson E.T., Westram A.M. & Widmer A. 2014. Genomics and the origin of species. Nature Rev. Genet. 15 (3): 176–192. DOI: 10.1038/nrg3644

    Article  CAS  PubMed  Google Scholar 

  • Smith J.M. 1978. The Evolution of Sex. Cambridge Univ. Press, Cambridge, 23. pp. ISBN: 9780521293020

    Google Scholar 

  • Smith, J.M., 1998. Evolutionary Genetics (2nd ed.). Oxford: Oxford U. Pr. (UK), 35. pp. ISBN-10: 0198502311. ISBN-13:978-0198502319

    Google Scholar 

  • Sommer U. & Worm B. (eds) 2002. Competition and Coexistence. Ecological Studies, Vol. 161. Analysis and Synthesis. Springer Science & Business Media (Germany), 22. pp. ISBN: 978-3-642-62800-9 DOI: 10.1007/978-3-642-56166-5

    Google Scholar 

  • Templeton A.R. 1981. Mechanisms of speciation - a population genetics approach. Annu. Rev. Ecol. Syst. 12: 2–48. DOI: 10.1146/annurev.es.12.110181.000323

    Article  Google Scholar 

  • Tilman D. 2004. Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly. Proc. Natl. Acad. Sci. 101 (30): 10854–10861. DOI: 10.1073/pnas.0403458101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Via S., Gomulkiewicz R., De Jong G., Scheiner S.M., Schlichting C.D. & Van Tienderen P.H. 1995. Adaptive phenotypic plasticity: consensus and controversy. Trends Ecol. Evol. 10 (5): 212–217. DOI: 10.1016/S0169-5347(00)89061-8

    Article  CAS  PubMed  Google Scholar 

  • Wade M.J. 2007. The co-evolutionary genetics of ecological communities. Nature Rev. Genet. 8: 185–195. DOI: 10.1038/nrg2031

    Article  CAS  PubMed  Google Scholar 

  • Wagner A. 2012. The role of robustness in phenotypic adaptation and innovation. Proc. Roy. Soc. London B: Biol. Sci. 279 (1732): 1249–1258. DOI: 10.1098/rspb.2011.2293

    Article  Google Scholar 

  • Wauters L., Tosi G. & Gurnell J. 2005. A review of the competitive effects of Grey Squirrell on behaviour, activity and habitat use of Red Squirrell in mixed deciduous woodland in Italy. Hystrix It. J. Mamm. 16 (1): 27–40. DOI: doi:10.4404/hystrix-16.1-4340

    Google Scholar 

  • Wilson E.O. & Peter F.M. (eds) 1988. Biodiversity. National Academy of Sciences (U.S.), Smithsonian Institution (USA), 52. pp. ISBN: 0-309-03783-2

    Google Scholar 

  • Wright J.S. 2002. Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia 130 (1): 1–14. DOI: 10.1007/s004420100809

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Cazzolla Gatti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cazzolla Gatti, R. A conceptual model of new hypothesis on the evolution of biodiversity. Biologia 71, 343–351 (2016). https://doi.org/10.1515/biolog-2016-0032

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2016-0032

Key words

Navigation