Skip to main content

Comparison between natural and impacted Alpine lakes six years after hydropower exploitation has ceased

Abstract

Many lakes in mountain regions have been used for hydropower generation since the 1950s. It has been estimated that as many as 79% of the rivers in the Alps have been affected by the presence of hydropower plants. In this context, the shutting down of hydropower plants on a group of Alpine lakes represented a good opportunity to study the ecological impact on them. We selected nine lakes that had been affected and nine that had not, and analysed the differences in environment, littoral diatoms and zoobenthos, phytoplankton, Zooplankton, and fish. Results showed that benthic biota-diatoms and zoobenthos- were the most affected by water-level drawdown during winter months. Even six years after the end of hydroelectric operations, diatom species richness and diversity were lower in impacted lakes. Assemblage structure was different for both diatoms and zoobenthos. Phytoplankton and Zooplankton were similar in impacted and unaffected lakes in terms of both species richness (and diversity) and assemblage structure. The degree of impact on fish was unclear because illegal stocking of lakes with allochthonous fish species had taken place. This study showed that compared to limnetic biota, littoral communities were the most affected by the decrease in water volume every winter. Six years after the end of hydroelectric operations, diatoms, and to lesser extent zoobenthos, were still different compared to those in natural (unaffected) lakes. Planktic communities seem to be either more resistant to the disturbances, or else able to recover more quickly to their former condition.

This is a preview of subscription content, access via your institution.

References

  • Angeli N., Cantonati M. & Rossetti G. 2002. Lo Zooplankton. In: Cantonati M., Tolotti M., & Lazzara M.,(eds), I laghi del Parco Adamello-Brenta. Ricerche limnologiche su laghi d’alta quota del settore siliceo del Parco. Parco Adamello- Brenta, Strembo (Trento), Documenti del Parco 14: 153–200.

    Google Scholar 

  • Aroviita J. & Hämäläinen H. 2008. The impact of water-level regulation on littoral macroinvertebrate assemblages in boreal lakes. Hydrobiologia 613: 45–56.

    Article  Google Scholar 

  • Baldi E. 1932. Note zoologiche sopra alcuni laghi della Presanella. II: II lago Serodoli. Memorie del Museo di Storia Naturale — Trento 1: 167–192.

    Google Scholar 

  • Baumgärtner D., Mörtl M. & Rothhaupt K.O. 2008. Effects of water-depth and water-level fluctuations on the macroinvertebrate community structure in the littoral zone of Lake Constance. Hydrobiologia 613: 97–107.

    Article  Google Scholar 

  • Betti L. 2003. Studio delle alterazioni delle acque del Parco Naturale Adamello Brenta; laghi d’alta quota alterati dallo sfruttamento idroelettrico. Parco Naturale Adamello Brenta, Strembo, Italy.

    Google Scholar 

  • Betti L. 2004. Studio sulle condizioni ittiche e sulle prospettive di gestione dei laghi d’alta quota sfruttati a scopo idroelettrico. Final Report. Parco Naturale Adamello Brenta, Strembo, Italy.

    Google Scholar 

  • Boggero A. & Lencioni V. 2006. Macroinvertebrates assemblages of high altitude lakes, inlets and outlets in the southern Alps. Arch. Hydrobiol. 165: 37–61.

    Article  Google Scholar 

  • Boggero A., Füreder L., Lencioni V., Simcic B., Thaler B., Ferrarese U., Lotter A.F. & Ettinger R. 2006. Littoral Chironomid community of Alpine lakes in relation to environmental factors. In: Lami A. & Boggero A., (eds), Ecology of high altitude aquatic systems in the Alps. Hydrobiologia 562: 145–165.

    CAS  Google Scholar 

  • Bowers R. & De Szalay F.A. 2005. Effects of water level fluctuations on zebra mussel distribution in a Lake Erie coastal wetland. J. Fresh. Ecol. 20: 85–92.

    Article  Google Scholar 

  • Cantonati M. & Lange-Bertalot H. 2011. Diatom monitors of close-to-pristine, very-low alkalinity habitats: three new Eunotia species from springs in Nature Parks of the southeastern Alps. J. Limnol. 70: 209–221.

    Article  Google Scholar 

  • Cantonati M., Tolotti M., & Lazzara M. 2002. I laghi del Parco Naturale Adamello Brenta. Ricerche limnologiche su laghi d’alta quota del settore siliceo del Parco. Documenti del Parco, 14. Parco Naturale Adamello-Brenta, Via Nazionale 12, I-38080 Strembo (Trento). ISBN 88-900841-0-3. 285 pp. [available from the first author upon request].

    Google Scholar 

  • Cantonati M., Lange-Bertalot H., Decet F. & Gabrieli J. 2011. Diatoms in very-shallow pools of the site of community importance Danta di Cadore Mires (south-eastern Alps), and the potential contribution of these habitats to diatom biodiversity conservation. Nova Hedwigia 93: 475–507.

    Article  Google Scholar 

  • Cantonati M., Rott E., Pfister P. & Bertuzzi E. 2007. Benthic algae in springs of the Alps: biodiversity and sampling methods, pp. 77–112. In: Cantonati M., Bertuzzi E. & Spitale D., (eds), The spring habitat: biota and sampling methods. Monografie del Museo Tridentino di Scienze Naturali 4. Museo Tridentino di Scienze Naturali, Trento, Italy.

    Google Scholar 

  • Cantonati M., Füreder L., Gerecke R., Jüttner I. & Cox E.J. 2012. Crenic habitats, hotspots for freshwater biodiversity conservation: toward an understanding of their ecology. Freshwater Sci. 31: 463–480.

    Article  Google Scholar 

  • Cantonati M., Scola S. Angeli N. Guella G. & Frassanito R. 2009. Environmental controls of epilithic diatom depthdistribution in an oligotrophic lake characterised by marked water-level fluctuations. Eur. J. Phycol. 44: 15–29.

    Article  Google Scholar 

  • Coops H. & Hosper S.H., 2002. Water-level management as a tool for the restoration of shallow lakes in the Netherlands. Lake Reserv. Manag. 18: 293–298.

    Article  Google Scholar 

  • Cott P.E., Sibley P.K., Somers W.M., Lilly M.R. & Gordon A.M. 2008. A review of water level fluctuations on aquatic biota with emphasis on fishes in ice-covered lakes. J. Am. Water Resour. Assoc. 44: 343–359.

    Article  Google Scholar 

  • De Bernardi R. 1984. Methods for the estimation of Zooplankton abundance, pp. 59–86. In: Downing J. A. & Riegler H., (eds), A manual on methods for the Assesment of Secondary productivityin fresh waters IBP Handbook N° 17. Blackwell Scientific Publications.

    Google Scholar 

  • De Emiliani M.O.G. 1997. Effects of water level fluctuations on phytoplankton in a river-floodplain lake system (Parana River, Argentina). Hydrobiologia 357: 1–15.

    Article  Google Scholar 

  • Dudgeon D., Arthington A.H., Gessner M.O., Kawabata Z.I., Knowler D.J., Lévęque C., Naiman R.J., Prieur-Richard A.E., Soto D., Stiassny M.L.J. & Sullivan C.A. 2006. Freshwater biodiversity: importance, threats, status, and conservation challenges. Biol. Rev. 81: 163–182.

    Article  PubMed  Google Scholar 

  • Dufręne M. & Legendre P. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monographs 67: 345–366.

    Google Scholar 

  • Evans D.O. 2007. Effects of hypoxia on scope-for-activity and power capacity of lake trout (Salvelinus namaycush). Can. J. Fish. Aquat. Sci. 64: 345–361.

    Article  CAS  Google Scholar 

  • Fischer P. & Öhl U. 2005. Effects of water-level fluctuations on the littoral benthic fish community in lakes: a mesocosm experiment. Behav.l Ecol. 16: 741–746.

    Article  Google Scholar 

  • Friedl G. & Wüest A. 2002. Disrupting biogeochemical cycles — Consequences of damming. Aquat. Sci. 64: 55–65.

    Article  CAS  Google Scholar 

  • Furey P.C., Nordin R.N. & Mazumder A. 2004. Water level drawdown affects physical and biogeochemical properties of littoral sediments of a reservoir and a natural lake. Lake Reser. Manag. 20: 280–295.

    Article  CAS  Google Scholar 

  • Gafny S., Gasith A. & Goren M. 1992. Effect of water level fluctuation on shore spawning of Mirogrex terraesanctae (Steinitz), (Cyprinidae) in Lake Kinnereth, Israel. J. Fish. Biol. 41: 863–871.

    Article  Google Scholar 

  • Hájek M., Roleček J., Cottenie K., Kintrová K., Horsák M., Poulíčková A., Hájková P., Fránková M. & Dítě D. 2011. Environmental and spatial controls of biotic assemblages in a discrete semi-terrestrial habitat: comparison of organisms with different dispersal abilities sampled in the same plots. J. Biogeog. 38: 1683–1693.

    Article  Google Scholar 

  • Hájek M., Poulíčková A., Vašutová M., Syrovátka V., Jiroušek M., Štěpánková J., Opravilová V. & Hájková P. 2014. Small ones and big ones: cross-taxon congruence reflects organism body size in ombrotrophic bogs. Hydrobiologia 726: 95–107.

    Article  CAS  Google Scholar 

  • Håkanson L. 1977. Influence of wind, fetch, and water depth on distribution of sediments in lake Vanern, Sweden. Can. J. Earth Sci. 14: 397–412.

    Article  Google Scholar 

  • Hawes I. & Smith R. 1993. The effect of localised nutrient enrichment on the shallow, epilithic periphyton of oligotrophic Lake Taupo, New Zealand. New Zeal. J. Marine & Freshwater Res. 27: 365–372.

    Article  CAS  Google Scholar 

  • IRSA-CNR, 1994. Metodi analitici per le acque. Istituto poligrafico e Zecca della Stato, Roma.

    Google Scholar 

  • Legendre P. & Legendre L. 1998. Numerical Ecology. Elsevier Science, Amsterdam, The Netherlands.

    Google Scholar 

  • Leira M. & Cantonati M. 2008. Effects of water-level fluctuations on lakes: an annotated bibliography. In: Wantzen K.M., Rothhaupt K.-O., Mörtl M., Cantonati M., Lászlo G.-T. & Fischer P., (eds), Ecological Effects of Water-Level Fluctuations in Lakes. Developments of Hydrobiology. Hydrobiologia 613: 171–184.

    Article  Google Scholar 

  • Leira M., Fillippi M.L. & Cantonati M. 2013. Ecosystem response to extreme water-level fluctuations in two alpine lakes: a paleolimnological approach. Submitted.

    Google Scholar 

  • Leslie A.J., Crisman T.L., Prenger J.P. & Ewel K.C. 1997. Benthic macroinvertebrates of small Florida pond cypress swamps and the influence of dry periods. Wetlands 17: 447–455.

    Article  Google Scholar 

  • Lund J.W.G., Kipling G. & Le Cren E.D. 1958. The inverted microscope method for estimating algae numbers and statistical basis of estimating by counting. Hydrobiologia 11: 143–170.

    Article  Google Scholar 

  • Mageed A.A.A. & Heikal M.T. 2006. Factors affecting seasonal patterns in epilimnion Zooplankton community in one of the largest man-made lakes in Africa (Lake Nasser, Egypt). Limnologica 36: 91–97.

    Article  Google Scholar 

  • Margalef R. 1983. Limnologia. Omega, Barcelona, Spain.

    Google Scholar 

  • Marnezy A. 2008. Alpine dams, from hydroelectric power to artificial snow. Revue de géographie alpine/J. Alpine Res. 96: 103–112.

    Article  Google Scholar 

  • McCune B. & Grace J.B. 2002. Analysis of ecological communities. MjM Software, Gleneden Beach.

    Google Scholar 

  • McGowan S., Leavitt P.R. & Hall R.I. 2005. A whole-lake experiment to determine the effects of winter drought on shallow lakes. Ecosystems 8: 694–708.

    Article  CAS  Google Scholar 

  • Merciai G. 1935. I laghi della Presanella. Memorie del Museo di Storia Naturale — Trento 3: 4–34.

    Google Scholar 

  • Merciai G. & Morandini G. 1931 Relazione della spedizione ai laghi Serodoli, Gelato e Nambino del Gruppo della Presanella. XXVI Annuario S.A.T. 1930–31. Trento: 97–114.

    Google Scholar 

  • Mills K.H., Chalanchuk S.M., Allan D.J. & Bodaly R.A. 2002. Abundance, survival, condition, and recruitment of Lake Whitefish (Coregonus clupeafornis) in a lake subjected to winter drawdown. Arch. Hydrobiol. 57: 209–219.

    Google Scholar 

  • Obertegger U., Flaim G., Braioni M.G., Sommaruga R., Corradini F. & Borsato A. 2007. Water residence time as a driving force of Zooplankton structure and succession. Aquatic Sci. 69: 575–583.

    Article  Google Scholar 

  • OECD (ed.) 2007. Climate Change in the European Alps -Adapting winter tourism and natural hazards management, (OECD — Organisation for Economic Co-operation and Development), Paris.

    Book  Google Scholar 

  • Ortega-Mayagoitia E., Armengol X. & Rojo C. 2000. Structure and dynamics of Zooplankton in a semi-arid wetland, the National Park Las Tablas de Daimiel (Spain). Wetlands 20: 629–638.

    Article  Google Scholar 

  • Poulíčková A., Dvořák P., Mazalová P. & Hašler P. 2014. Epipelic microphototrophs: an overlooked assemblage in lake ecosystems. Freshwat. Sci. 33: 513–523.

    Article  Google Scholar 

  • R Development Core Team 2012. R: a language and environment for statistical computing. Vienna, Austria, https://doi.org/www.Rproject.org.

    Google Scholar 

  • Rossa D.C. & Bonecker C.C. 2003. Abundance of planktonic and non-planktonic rotifers in lagoons of the Upper Parana River floodplain. Amazoniana-Limnologia Et Oecologia Regionalis Systemae Fluminis Amazonas 17: 567–581.

    Google Scholar 

  • Rott E. 1981. Some results from phytoplankton counting inter-calibrations. Schweiz. Z. Hydrol. 43: 34–62.

    Google Scholar 

  • Stockner J., Langston A., Sebastian D. & Wilson G. 2005. The limnology of Williston Reservoir: British Columbia’s largest lacustrine ecosystem. Water Quality Res. J. Can. 40: 28–50.

    Article  CAS  Google Scholar 

  • Strayer D.L. & Findlay S.E.G. 2010. Ecology of freshwater shore zones. Aquatic Sci. 72: 127–163.

    Article  CAS  Google Scholar 

  • Sutela T., Aroviita J. & Keto A. 2013. Assessing ecological status of regulated lakes with littoral macrophyte, macroinvertebrate and fish assemblages. Ecol. Indicat. 24: 185–192

    Article  Google Scholar 

  • Tödter U. 1998. Wildflusslandschaften — Spitzenreiter unter den gefährdeten Ökosystemen. In: CIPRA (ed.) Alpenreport 1. Paul Haupt Bern, pp. 178–182.

    Google Scholar 

  • Tolotti M. 2001. Phytoplankton and littoral epilithic diatoms in high mountain lakes of the Adamello-Brenta Regional Park (Trentino, Italy) and their relation to trophic status and acidification risk. J. Limnol. 60: 171–188.

    Article  Google Scholar 

  • Tolotti M. & Cantonati M. 2002. II fltoplancton. In: Cantonati M., Tolotti M. & Lazzara M., (eds), I laghi del Parco Adamello-Brenta. Ricerche limnologiche su laghi d’alta quota del settore siliceo del Parco. Parco Adamello- Brenta, Strembo (Trento), Documenti del Parco 14: 201–243.

    Google Scholar 

  • Tolotti M., Corradini F., Boscaini A. & Calliari D. 2007. Weather-driven ecology of planktonic diatoms in Lake Tovel (Trentino, Italy). Hydrobiologia 578: 147–156.

    Article  Google Scholar 

  • Truffer B., Bratrich C., Markard J., Peter A., Wüest A. & Wehrli B. 2003. Green Hydropower: The contribution of aquatic science research to the promotion of sustainable electricity. Aquat. Sci. 65: 99–110.

    Article  Google Scholar 

  • Utermöhl H. 1958. Zur Vervollkommung der quantitative Phytoplankton-Methodik. — Mitt. Internat. Verein. Limnol. 9: 1–38.

    Google Scholar 

  • Vanormelingen P., Verleyen E. & Vyverman W. 2008. The diversity and distribution of diatoms: from cosmopolitanism to narrow endemism. Biodivers. Conserv. 17: 393–405.

    Article  Google Scholar 

  • Wantzen K.M., Rothhaupt K.O., Mörtl M., Cantonati M., Lászlo G.T. & Fischer P. 2008. Ecological Effects of Water-Level Fluctuations in Lakes. Developments of Hydrobiology. Hydrobiologia 613: 1–4.

    Article  Google Scholar 

  • Watts C.J. 2000. Seasonal phosphorus release from exposed, reinundated littoral sediments of two Australian reservoirs. Hydrobiologia 431: 27–39.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Cantonati.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Spitale, D., Angeli, N., Lencioni, V. et al. Comparison between natural and impacted Alpine lakes six years after hydropower exploitation has ceased. Biologia 70, 1597–1605 (2015). https://doi.org/10.1515/biolog-2015-0185

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2015-0185

Key words

  • littoral diatoms
  • littoral zoobenthos
  • phytoplankton
  • Zooplankton
  • Water-Level Fluctuations (WLF)