Skip to main content
Log in

Spatial variability of hydrophysical properties of fallow sandy soils

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Spatial heterogeneity of soil hydrophysical properties was estimated in 2 fallow sandy soils at Csólyospálos and Örbottyán, Hungary. Significant differences in small particle (= silt + clay) content (5.0% vs. 13.7%), organic matter content (1.62% vs. 0.91%), and CaCO3 content (3.1% vs. 5.1%) measured at Csólyospálos and Örbottyán, respectively, resulted in a higher persistence of water repellency in the Csólyospálos soil. It also resulted in a significantly higher water sorptivity and hydraulic conductivity of the Örbottyán soil. The spatial heterogeneity of soil hydrophysical properties was significant reaching 3 orders of magnitude differences due to the variances of soil properties. The water repellency cessation time was inversely related to the hydraulic conductivity and water sorptivity at Csólyospálos site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker R.S. & Hillel D. 1990. Laboratory tests of a theory of fingering during infiltration into layered soils. Soil Sci. Soc. Am. J. 54: 20–30.

    Article  Google Scholar 

  • Bisdom E.B.A., Dekker L.W. & Schoute J.F.T.. 1993. Water repellency of sieve fractions from sandy soils and relationships with organic material and soil structure. Geoderma 56: 105–118.

    Article  Google Scholar 

  • Csorba S., Raveloson A., Tóth E., Nagy V. & Farkas C. 2014. Modelling soil water content variations under drought stress on soil column cropped with winter wheat. J. Hydrol. Hydromech. 62: 269–276.

    Article  Google Scholar 

  • Czachor H. & Lichner Ľ. 2013. Temperature influences water sorptivity of soil aggregates. J. Hydrol. Hydromech. 61: 84–87.

    Article  Google Scholar 

  • Czachor H., Hallett P.D., Lichner L. & Jozefaciuk G. 2013. Pore shape and organic compounds drive major changes in the hydrological characteristics of agricultural soils. Eur. J. Soil Sci. 64: 334–344.

    Article  CAS  Google Scholar 

  • Dekker L.W. & Ritsema C.J. 1996. Variation in water content and wetting patterns in Dutch water repellent peaty clay and clayey peat soils. Catena 28: 89–105.

    Article  CAS  Google Scholar 

  • Dekker L.W., Oostindie K., Ziogas A.K. & Ritsema C.J. 2001. The impact of water repellency on soil moisture variability and preferential flow. International Turfgrass Soc. Res. J. 9: 498–505.

    Google Scholar 

  • Decago. 2014. Mini Disk Infiltrometer User’s Manual. Decagon Devices, Inc., Pullman.

    Google Scholar 

  • Diehl D., Bayer J.V., Woche S.K., Bryant R., Doerr S.H. & Schaumann G.E. 2010. Reaction of soil water repellency to artificially induced changes in soil pH. Geoderma 158: 375–384.

    Article  CAS  Google Scholar 

  • Doerr S.H., Shakesby R.A. & Walsh R.P.D.. 2000. Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth-Science Rev. 51: 33–65.

    Article  Google Scholar 

  • Doerr S.H. & Thomas A.D. 2000. The role of soil moisture in controlling water repellency: new evidence from forest soils in Portugal. J. Hydrol. 231–232: 134–147.

    Article  Google Scholar 

  • Dövényi Z. 2010. Magyarország kistájainak katasztere. Hungarian Academy of Science, Budapest, 876 pp.

    Google Scholar 

  • Fodor N. & Rajkai K. 2011. Computer program (SOILarium 1.0) for estimating the physical and hydrophysical properties of soils from other soil characteristics. Agrokémia és Talajtan 60: 27–40.

    Google Scholar 

  • Fodor N., Sándor R., Orfanus T., Lichner L. & Rajkai K. 2011. Evaluation method dependency of measured saturated hydraulic conductivity. Geoderma 165: 60–68.

    Article  Google Scholar 

  • Goebel M.-O., Bachmann J., Reichstein M., Janssens I.A. & Guggenberger G. 2011. Soil water repellency and its implications for organic matter decomposition–is there a link to extreme climatic events. Global Change Biol. 17. 2640–2656.

    Article  Google Scholar 

  • Hallett P.D. 2007. An introduction to soil water repellency. In: Gaskin R.E. (ed.). Adjuvants for Agrochemicals. Hand Multimedia, Christchurch, New Zealand, 13 pp.

    Google Scholar 

  • Hendrayanto D., Kosugi K. & Mizuyama T. 2000. Scaling hydraulic properties of forest soils. Hydrol. Proc. 14: 521–538.

    Article  Google Scholar 

  • Kawamoto K., Mashino S., Oda M. & Miyazaki T. 2004. Moisture structures of laterally expanding fingering flows is sandy soils. Geoderma 119: 197–217.

    Article  Google Scholar 

  • Klute A. & Dirksen C. 1986. Hydraulic conductivity and diffusivity: laboratory methods, pp. 687–732. In: Klute A. (ed.), 2nd ed. Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods. Madison, WI.

    Google Scholar 

  • Kořenková L., Šimkovic I., Dlapa P., Juráni B. & Matúš P. 2015. Identifying the origin of soil water repellency at regional level using multiple soil characteristics: The White Carpathians and Myjavska Pahorkatina Upland case study. Soil & Water Res. 10: 78–89.

    Article  Google Scholar 

  • Leelamanie D.A.L. & Karube J. 2014. Water stable aggregates of Japanese Andisol as affected by hydrophobicity and drying temperature. J. Hydrol. Hydromech. 62: 97–100.

    Article  Google Scholar 

  • Lichner L., Hallett P.D., Orfánus T., Czachor H., Rajkai K., Šír M. & Tesař M. 2010. Vegetation impact on the hydrology of an aeolian sandy soil in a continental climate. Ecohydrology 3: 413–420.

    Article  Google Scholar 

  • Lichner L., Holko L., Zhukova N., Schacht K., Rajkai K., Fodor N. & Sándor R. 2012. Plants and biological soil crust influence the hydrophysical parameters and water flow in an Aeolian sandy soil. J. Hydrol. Hydromech. 60: 309–318.

    Article  Google Scholar 

  • Lichner L., Capuliak J., Zhukova N., Holko L., Czachor H. & Kollár J. 2013a. Pines influence hydrophysical parameters and water flow in a sandy soil. Biologia 68. 1104–1108.

    Article  CAS  Google Scholar 

  • Lichner L., Hallett P.D., Drongová Z., Czachor H., Kovacik L., Mataix-Solera J. & Homolák M. 2013b. Algae influence hydrophysical parameters of a sandy soil. Catena 108: 58–68.

    Article  Google Scholar 

  • Moradi A.B., Carminati A., Lamparter A., Woche S.K., Bachmann J., Vetterlein D., Vogel H.J. & Osval S.E. 2012. Is the rhizosphere temporarily water repellent. Vadose Zone J. 11, doi:10.2136/vzj2011.0120

  • Novák V., Lichner Ľ., Zhang B. & Kňava K. 2009. The impact of heating on the hydraulic properties of soils sampled under different plant cover. Biologia 64: 483–486.

    Article  Google Scholar 

  • Orfánus T., Dlapa P., Fodor N., Rajkai K., Sándor R. & Nováková K. 2014. How severe and subcritical water repellency determines the seasonal infiltration in natural and cultivated sandy soils. Soil Tillage Res. 135: 49–59.

    Article  Google Scholar 

  • Philip J.R. 1957. The theory of infiltration: 4. Sorptivity and algebraic infiltration equations. Soil Sci. 84: 257–267.

    Article  Google Scholar 

  • Rodríguez-Alleres M. & Benito E. 2011. Spatial and temporal variability of surface water repellency in sandy loam soils of NW Spain under Pinus pinaster and Eucalyptus globules plantations. Hydrol. Proc. 25. 3649–3658.

    Article  Google Scholar 

  • Sándor R. 2014. Scale related problems of the soil-plantatmosphere system. Scale dependency of soil hydrological properties as well as of meteorological data. Ph.D. Thesis, Szeged, 141 p.

    Google Scholar 

  • Schwen A., Bodner G. & Loiskandl W. 2011. Time-variable soil hydraulic properties in near-surface soil water simulations for different tillage methods. Agricult. Water Manag. 99: 42–50.

    Article  Google Scholar 

  • van Genuchten M.T. 1980. A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Amer. J. 44: 892–898.

    Article  Google Scholar 

  • WR. 2014. World Reference Base for Soil Resource. 2014. 2nd edition. World Soil Resources Reports No. 106. FAO, Rome.

    Google Scholar 

  • Zhang R. 1997. Determination of soil sorptivity and hydraulic conductivity from the disk infiltrometer. Soil Sci. Soc. Am. J. 61. 1024–1030.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renáta Sándor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sándor, R., Lichner, Ľ., Filep, T. et al. Spatial variability of hydrophysical properties of fallow sandy soils. Biologia 70, 1468–1473 (2015). https://doi.org/10.1515/biolog-2015-0182

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2015-0182

Key words

Navigation