Skip to main content
Log in

A new method for estimating soil water repellency index

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The soil water repellency index, R, is calculated from the ethanol sorptivity, Se, and water sorptivity, Sw, using an equation: R = 1.95 Se/Sw. In the older method, Se and Sw were measured in pairwise arrangements to reduce the influence of spatial heterogeneity of soil properties, and one value of R only was calculated from one pair of Se and Sw measurements. The new method to estimate R takes into account all the measured values of water and ethanol sorptivity, i.e., m × n values of R are to be calculated from m values of Sw and n values of Se. The results of the t-test revealed that there is not a statistically significant difference between the means of both samples at the 95.0% confidence level for all four studied soils. It was found using the F-test that there is not a statistically significant difference between the variances of samples estimated by the older and new methods at the 95.0% confidence level for all but one (grassland soil) studied soils. Comparison of R values taken in sandy soil under different vegetation cover in Sekule, southwest Slovakia, revealed that the average values of R estimated using the new method increased with vegetation succession, i.e., Pure sand < Glade soil < Grassland soil < Pine-forest soil, while the mean values of R estimated using the older method changed in the order: Pure sand < Grassland soil < Glade soil < Pine-forest soil. It seems that an increase in the number of R values processed can result in the more reliable mean values of R at the sites with high spatial heterogeneity of soil properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bachmann J., Goebel M.-O. & Woche S.K. 2013. Small-scale contact angle mapping on undisturbed soil surfaces. J. Hydrol. Hydromech. 61: 3–8.

    Article  Google Scholar 

  • Beatty S.M. & Smith J.E. 2013. Dynamic soil water repellency and infiltration in post-wildfire soils. Geoderma 192: 160–172.

    Article  Google Scholar 

  • Beatty S.M. & Smith J.E. 2014. Infiltration of water and ethanol solutions in water repellent post wildfire soils. J. Hydrol. 514: 233–248.

    Article  CAS  Google Scholar 

  • Dekker L.W., Doerr S.H., Oostindie K., Ziogas A.K. & Ritsema C.J. 2001. Water repellency and critical soil water content in a dune sand. Soil Sci. Soc. Am. J. 65. 1667–1674.

    Article  CAS  Google Scholar 

  • Diehl D. 2013. Soil water repellency: Dynamics of heterogeneous surfaces. Colloids and Surfaces A: Physicochemical and Engineerin. Aspects 432: 8–18.

    Article  CAS  Google Scholar 

  • Doerr S.H. 1998. On standardizing the “Water Drop Penetration Time” and the “Molarity of an Ethanol Droplet” techniques to classify soil hydrophobicity: a case study using medium textured soils. Earth Surf. Proc. Landforms 23: 663–668.

    Article  CAS  Google Scholar 

  • Doerr S.H., Shakesby R.A. & Walsh R.P.D. 2000. Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth-Sci. Rev. 51: 33–65.

    Article  Google Scholar 

  • Faško P., Lapin M. & Pecho J. 2008. 20-year extraordinary climatic period in Slovakia. Meteorol. Časopis 11: 99–105.

    Google Scholar 

  • Gordon D.C. & Hallett P.D. 2014. An automated microinfiltrometer to measure small-scale soil water infiltration properties. J. Hydrol. Hydromech. 62: 248–252.

    Article  Google Scholar 

  • Hallett P.D. 2007. An introduction to soil water repellency, 13 p. In: Gaskin R.E. (ed.). Proc. 8th Int. Symp. Adjuvants for Agrochemicals. Hand Multimedia, Christchurch, New Zealand. ISBN 978-0-473-12388-8.

    Google Scholar 

  • Hallett P.D., Nunan N., Douglas J.T. & Young I.M. 2004. Millimeter-scale spatial variability in soil water sorptivity. Soil Sci. Soc. Amer. J. 68: 352–358.

    Article  CAS  Google Scholar 

  • Hunter A.E., Chau H.W. & Si B.C. 2011. Impact of tension infiltrometer disc size on measured soil water repellency index. Can. J. Soil Sci. 91: 77–81.

    Article  Google Scholar 

  • Kalivodová E., Kubiček F., Bedrna Z., Kalivoda H., Gavlas V., Kollár J., Gajdoš P. & Štepanovičová O. 2002. Sand Dunes of Slovakia. Luka-Press, Bratislava, 60 pp. (In Slovak.)

    Google Scholar 

  • Klípa V., Sněhota M. & Dohnal M. 2015. New automatic minidisk infiltrometer: design and testing. J. Hydrol. Hydromech. 63: 110–116.

    Article  Google Scholar 

  • Kořenková L., Šimkovic I., Dlapa P., Juráni B. & Matúš P. 2015. Identifying the origin of soil water repellency at regional level using multiple soil characteristics: The White Carpathians and Myjavska Pahorkatina Upland case study. Soil & Water Res. 1 (2): 78–89.

    Article  Google Scholar 

  • Król A., Lipiec J. & Frac M. 2015. The effect of dairy sewage sludge amendment on repellency and hydraulic conductivity of soil aggregates from two depths of Eutric Cambisol. J. Plant Nutr. Soil Sci. 178: 270–277.

    Article  Google Scholar 

  • Lichner Ľ., Hallett P.D., Feeney D.S., Ďugová O., Šír M. & Tesař M. 2007. Field measurement of soil water repellency and its impact on water flow under different vegetation. Biologia 62: 537–541.

    Article  Google Scholar 

  • Lichner L., Eldridge D.J., Schacht K., Zhukova N., Holko L., Šír M. & Pecho J. 2011. Grass cover influences hydrophysical parameters and heterogeneity of water flow in a sandy soil. Pedosphere 21: 719–729.

    Article  CAS  Google Scholar 

  • Lichner Ľ., Holko L., Zhukova N., Schacht K., Rajkai K., Fodor N. & Sándor R. 2012. Plants and biological soil crust influence the hydrophysical parameters and water flow in an aeolian sandy soil. J. Hydrol. Hydromech. 60: 309–318.

    Article  Google Scholar 

  • Lichner L., Hallett P.D., Drongová Z., Czachor H., Kovacik L., Mataix-Solera J. & Homolák M. 2013a. Algae influence hydrophysical parameters of a sandy soil. Catena 108: 58–68.

    Article  Google Scholar 

  • Lichner Ľ., Capuliak J., Zhukova N., Holko L., Czachor H. & Kollár J. 2013b. Pines influence hydrophysical parameters and water flow in a sandy soil. Biologia 68. 1104–1108.

    Article  CAS  Google Scholar 

  • Moody D.R. & Schlossberg M.J. 2010. Soil water repellency index prediction using the molarity of ethanol droplet test. Vadose Zone J. 9. 1046–1051.

    Article  CAS  Google Scholar 

  • Prochazka, M., Deyl, M., Novicky, O. 2001. Technology for detecting trends and changes in time series of hydrological and meteorological variables–Change and Trend Problem Analysis (CTPA). User’s Guide. CHMI, Prague, 25 pp.

    Google Scholar 

  • Schacht K., Chen Y., Tarchitzky J., Lichner L. & Marschner B. 2014. Impact of treated wastewater irrigation on water repellency of Mediterranean soils. Irrig. Sci. 32: 369–378.

    Article  Google Scholar 

  • Schaumann G.E., Braun B., Kirchner D., Rotard W., Szewzyk U. & Grohmann E. 2007. Influence of biofilms on the water repellency of urban soil samples. Hydrol. Process. 21. 2276–2284.

    Article  Google Scholar 

  • Soil Survey Division Staf. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18, 437 pp.

    Google Scholar 

  • Tillman R.W., Scotter D.R., Wallis M.G. & Clothier B.E. 1989. Water repellency and its measurement by using intrinsic sorptivity. Austr. J. Soil Res. 27: 637–644.

    Article  Google Scholar 

  • WR. 2006. World Reference Base for Soil Resource. 2006. 2nd edition. World Soil Resources Reports No. 103. FAO, Rome.

    Google Scholar 

Download references

Acknowledgements

This contribution was supported by the Scientific Grant Agency VEGA Projects No. 2/0054/14 and 2/0009/15. This publication is the result of the project implementation ITMS 26240120004 Centre of excellence for integrated flood protection of land supported by the Research & Development Operational Programme funded by the ERDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavla Pekárová.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pekárová, P., Pekár, J. & Lichner, Ľ. A new method for estimating soil water repellency index. Biologia 70, 1450–1455 (2015). https://doi.org/10.1515/biolog-2015-0178

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2015-0178

Key words

Navigation