Skip to main content
Log in

Depth-dependent heterogeneity of water flow in sandy soil under grass

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The non-equilibrium water flow was studied on an aeolian sandy soil under grass using the dye tracer infiltration experiments. Two experiments simulating infiltration of 20 mm and 70 mm of rain water were conducted. The improved digital image analysis technique for estimating the effective cross section (ECS) and degree of preferential flow (DPF) from stained soil profiles was used to analyze the depth dependency and variation of the ECS and DPF parameters. It was found that the heterogeneity of water flow in sandy soil under grass increased with depth. Extremes of heterogeneity parameters (minimum value of the ECS and maximum value of the DPF) were almost the same for the two cumulative infiltrations, and the depth, in which the extremes of heterogeneity parameters occurred, increased with an increase in cumulative infiltration. Moreover, considerable variation of infiltration patterns was indentified in consecutive vertical sections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DPF:

degree of preferential flow

ECS:

effective cross section

References

  • Boulet A.-K., Prats S.A., Malvar M., González-Pelayo O., Coelho C.O.A., Ferreira A.J.D. & Keizer J.J. 2015. Surface and subsurface flow generation processes in eucalyptus plantations in north-central Portugal. J. Hydrol. Hydromech. 62: 193–200.

    Article  Google Scholar 

  • Czachor H., Hallett P.D., Lichner L. & Jozefaciuk G. 2013. Pore shape and organic compounds drive major changes in the hydrological characteristics of agricultural soils. Eur. J. Soil Sci. 64: 334–344.

    Article  CAS  Google Scholar 

  • Diamantopoulos E., Durner W., Reszkowska A. & Bachmann J. 2013. Effect of soil water repellency on soil hydraulic properties estimated under dynamic conditions. J. Hydrol. 486: 175–186.

    Article  Google Scholar 

  • Diehl D. 2013. Soil water repellency: Dynamics of heterogeneous surfaces. Colloids and Surfaces A: Physicochemical and Engineerin. Aspects 432: 8–18.

    Article  CAS  Google Scholar 

  • Drahorad S., Steckenmesser D., Felix-Henningsen P., Lichner Ľ. & Rodný M. 2013. Ongoing succession of biological soil crusts increases water repellency–a case study on Arenosols in Sekule, Slovakia. Biologia 68. 1089–1093.

    Article  Google Scholar 

  • Faško P., Lapin M. & Pecho J. 2008. 20-year extraordinary climatic period in Slovakia. Meteorologický Časopis 11: 99–105.

    Google Scholar 

  • Gordillo-Rivero A.J., Garcia-Moreno J., Jordan A., Zavala L.M. & Granja-Martins F.M. 2014. Fire severity and surface rock fragments cause patchy distribution of soil water repellency and infiltration rates after burning. Hydrol. Process. 28. 5832–5843.

    Article  Google Scholar 

  • Homolák M., Capuliak J., Pichler V. & Lichner Ľ. 2009. Estimating hydraulic conductivity of a sandy soil under different plant covers using minidisk infiltrometer and a dye tracer experiment. Biologia 64: 600–604.

    Article  Google Scholar 

  • Kalivodová E., Kubiček F., Bedrna Z., Kalivoda H., Gavlas V., Kollár J., Gajdoš P. & Štepanovičová O. 2002. Sand dunes of Slovakia. Luka-Press, Bratislava, 60 pp. (In Slovak)

    Google Scholar 

  • Kodešová R., Němeček K., Kodeš V. & Žigová A. 2012. Using dye tracer for visualization of preferential flow at macro- and microscales. Vadose Zone Journal 11, DOI: 10.2136/vzj2011.0088.

    Google Scholar 

  • Kořenková L., Šimkovic I., Dlapa P., Juráni B. & Matúš P. 2015. Identifying the origin of soil water repellency at regional level using multiple soil characteristics: The White Carpathians and Myjavska Pahorkatina Upland case study. Soil & Water Res. 10: 78–89.

    Article  Google Scholar 

  • Lichner L., Hallett P.D., Orfánus T., Czachor H., Rajkai K., Šír M. & Tesař M. 2010. Vegetation impact on the hydrology of an aeolian sandy soil in a continental climate. Ecohydrology 3: 413–420.

    Article  Google Scholar 

  • Lichner L., Eldridge D.J., Schacht K., Zhukova N., Holko L., Šír M. & Pecho J. 2011. Grass cover influences hydrophysical parameters and heterogeneity of water flow in a sandy soil. Pedosphere 21: 719–729.

    Article  CAS  Google Scholar 

  • Lichner Ľ., Holko L., Zhukova N., Schacht K., Rajkai K., Fodor N. & Sándor R. 2012. Plants and biological soil crust influence the hydrophysical parameters and water flow in an aeolian sandy soil. J. Hydrol. Hydromech. 60: 309–318.

    Article  Google Scholar 

  • Lichner Ľ., Dušek J., Dekker L.W., Zhukova N., Faško P., Holko L. & Šír M. 2013. Comparison of two methods to assess heterogeneity of water flow in soils. J. Hydrol. Hydromech. 61: 299–304.

    Article  Google Scholar 

  • Lozano E., García-Orenes F., Bárcenas-Moreno G., Jiménez-Pinilla P., Mataix-Solera J., Arcenegui V., Morugán-Coronado A. & Mataix-Beneyto J. 2014. Relationships between soil water repellency and microbial community composition under different plant species in a Mediterranean semiarid forest. J. Hydrol. Hydromech. 62: 101–107.

    Article  Google Scholar 

  • MathWork. 2006. MATLAB–The language of technical computing. Available at www.mathworks.com/products/matlab/ (verified 9 Oct. 2014). MathWorks, Natick, MA.

    Google Scholar 

  • Ritsema C.J., Dekker L.W., Nieber J.L. & Steenhuis T.S. 1998. Modelling and field evidence of finger formation and finger recurrence in a water repellent sandy soil. Water Resour. Res. 34: 555–567.

    Article  CAS  Google Scholar 

  • Täumer K., Stoffregen H. & Wessolek G. 2006. Seasonal dynamics of preferential flow in a water repellent soil. Vadose Zone J. 5: 405–411.

    Article  Google Scholar 

  • WR. 2014. World Reference Base for Soil Resource. 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.

    Google Scholar 

  • Wang K. & Zhang R. 2011. Heterogeneous soil water flow and macropores described with combined tracers of dye and iodine. J. Hydrol. 397: 105–117.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This contribution was supported by grant agency APVV grant 0512-12 and Scientific Grant Agency VEGA Projects No. 2/0054/14 and 2/0013/15. This publication is the result of the project implementation ITMS 26240120004 Centre of excellence for integrated flood protection of land supported by the Research & Development Operational Programme funded by the ERDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Rodný.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodný, M., Lichner, Ľ., Schacht, K. et al. Depth-dependent heterogeneity of water flow in sandy soil under grass. Biologia 70, 1462–1467 (2015). https://doi.org/10.1515/biolog-2015-0167

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2015-0167

Key words

Navigation