Skip to main content
Log in

Using dye tracer for visualizing roots impact on soil structure and soil porous system

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Plants influence the water regime in soil by both water uptake and an uneven distribution of water infiltration at the soil surface. The latter process is more poorly studied, but it is well known that roots modify soil structure by enhancing aggregation and biopore production. This study used a dye tracer to visualize the impact of plants on water flow in the topsoil of a Greyic Phaeozem. Brilliant blue was ponded to 10 cm height in a 1 m × 1 m frame in the field immediately after harvest of winter wheat (Triticum aestivum L.). After complete infiltration, the staining patterns within the vertical and horizontal field-scale sections were studied. In addition, soil thin sections were made and micromorphological images were used to study soil structure and dye distribution at the microscale. The field-scale sections clearly documented uneven dye penetration into the soil surface, which was influenced by plant presence and in some cases by mechanical compaction of the soil surface. The micromorphological images showed that root activities compress soil and increases the bulk density near the roots (which could be also result of root water uptake and consequent soil adhesion). On the other hand in few cases a preferential flow along the roots was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson A.E., Weiler M., Alila Y. & Hudson R.O. 2009. Dye staining and excavation of a lateral preferential flow network. Hydrol. Earth Syst. Sci. 13: 935–944.

    Article  Google Scholar 

  • Bachmair S., Weiler M. & Nutzmann G. 2009. Controls of land use and soil structure on water movement: Lessons for pollutant transfer through the unsaturated zone. J. Hydrol. 369: 241–252.

    Article  CAS  Google Scholar 

  • Bengough A.G., McKenzie B.M., Hallett P.D. & Valentine T.A. 2011. Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits. J. Exp. Bot. 62: 59–68.

    Article  CAS  PubMed  Google Scholar 

  • Bogner C., Wolf B., Schlather M. & Huwe B. 2008. Analysing flow patterns from dye tracer experiments in a forest soil using extreme value statistics. Eur. J. Soil Sci. 59: 103–113.

    Article  Google Scholar 

  • Cey E.E. & Rudolph D.L. 2009. Field study of macropore flow processes using tension infiltration of a dye tracer in partially saturated soils. Hydrol. Process. 23. 1768–1779.

    Article  Google Scholar 

  • Etana A., Larsbo M., Keller T., Arvidsson J., Schjřnning P., Forkman J. & Jarvis N. 2013. Persistent subsoil compaction and its effects on preferential flow patterns in a loamy till soil. Geoderma 192: 430–436.

    Article  Google Scholar 

  • Fér M. & Kodešová R. 2012. Estimating hydraulic conductivities of the soil aggregates and their clay-organic coatings using numerical inversion of capillary rise data. J. Hydrol. 468–469: 229–240.

    Article  CAS  Google Scholar 

  • Flury M., Flühler H., Jury W.A. & Leuenberger J. 1994. Susceptibility of soils to preferential flow of water–Field-studies. Water Resour. Res. 30. 1945–1954.

    Article  Google Scholar 

  • Flury M. & Flühler H. 1995. Tracer characteristic of Brilliant Blue FCF. Soil Sci. Soc. Am. J. 59: 22–27.

    Article  CAS  Google Scholar 

  • Flury M. & Wai N.N. 2003. Dyes as tracers for vadose zone hydrology. Rev. Geophys. 41: Art. No. 1002.

    Google Scholar 

  • Gerke K.M., Roy C., Sidle R.C. & Mallants D. 2013. Criteria for selecting fluorescent dye tracers for soil hydrological applications using Uranine as an example. J. Hydrol. Hydromech. 61: 313–325.

    Article  Google Scholar 

  • Hallett P.D., Karim K.H., Bengough A.G. & Otten W. 2013. Biophysics of the vadose zone: From reality to model systems and back again. Vadose Zone J. 12(4), DOI: 10.2136/vzj2013.05.0090

    Google Scholar 

  • Hardie M.A., Cotching W.E., Doyle R.B., Holz G., Lisson S. & Mattern K. 2011. Effect of antecedent soil moisture on preferential flow in a texture-contrast soil. J. Hydrol. 398: 191–201.

    Article  CAS  Google Scholar 

  • Hillel D. 2004. Introduction to Environmental Soil Physics. Elsevier Academic Press. Amsterdam.

    Google Scholar 

  • Homolák M., Capuliak J., Pichler V. & Lichner L. 2009. Estimating hydraulic conductivity of a sandy soil under different plant covers using minidisk infiltrometer and a dye tracer experiment. Biologia 64: 600–604.

    Article  Google Scholar 

  • Jirků V., Kodešová R., Nikodem A., Mühlhanselová M. & Žigová A. 2013. Temporal variability of structure and hydraulic properties of topsoil of three soil types. Geoderma 204–205: 43–58.

    Article  CAS  Google Scholar 

  • Kasteel R., Vogel H.-J. & Roth K. 2002. Effect of non-liner adsorption on the transport behavior of Brilliant Blue in field soil. Eur. J. Soil Sci. 53: 231–240.

    Article  Google Scholar 

  • Kasteel R., Burkhardt M., Giesa S. & Vereecken H. 2005. Characterization of field tracer transport using high-resolution images. Vadose Zone J. 4: 101–111.

    Article  CAS  Google Scholar 

  • Kasteel R., Garnier P., Vachier P. & Coquit Y. 2007. Dye tracer infiltration in the plough layer after straw incorporation. Geoderma 137: 360–369.

    Article  Google Scholar 

  • Kočárek M., Kodešová R., Kozák J., Drábek O. & Vacek O. 2005. Chlorotoluron behaviour in five different soil types. Plant Soil Environ. 51: 304–309.

    Article  Google Scholar 

  • Kočárek M., Kodešová R., Kozák J. & Drábek O. 2010. Field study of chlorotoluron transport and its prediction by the BPS mathematical model. Soil Water Res. 5: 153–160.

    Article  Google Scholar 

  • Kodešová R., Kodeš V., Žigová A. & Šimůnek J. 2006. Impact of plant roots and soil organisms on soil micromorphology and hydraulic properties. Biologia 61(Suppl. 19): S339–S343.

    Google Scholar 

  • Kodešová R., Pavlů L., Kodeš V., Žigová A. & Nikodem A. 2007. Impact of spruce forest and grass vegetation cover on soil micromorphology and hydraulic properties of organic matter horizon. Biologia 62: 565–568.

    Article  Google Scholar 

  • Kodešová R., Kočárek M., Kodeš V., Šimůnek J. & Kozák J. 2008. Impact of soil micromorphology features on water flow and herbicide transport in soils. Vadose Zone J. 7: 798–809.

    Article  CAS  Google Scholar 

  • Kodešová R., Rohošková M. & Žigová A. 2009a. Comparison of aggregate stability within six soil profiles under conventional tillage using various laboratory tests. Biologia 64: 550–554.

    Article  Google Scholar 

  • Kodešová R., Vignozzi N., Rohošková M., Hájková T., Kočárek M., Pagliai M., Kozák J. & Šimůnek J. 2009b. Impact of varying soil structure on transport processes in different diagnostic horizons of three soil types. J. Contam. Hydrol. 104: 107–125.

    Article  CAS  PubMed  Google Scholar 

  • Kodešová R., Němeček K., Kodeš V. & Žigová, A. 2012. Using dye tracer for visualization of preferential flow at macro- and microscales. Vadose Zone J. 11: doi:10.2136/vzj2011.0088.

  • Lichner L., Eldridge D.J., Schacht K., Zhukova N., Holko L., Šír M. & Pecho J. 2011. Grass cover influences hydrological parameters and heterogeneity of water flow in a sandy soil. Pedosphere 21: 719–729.

    Article  CAS  Google Scholar 

  • Lichner L., Holko L., Zhukova N., Schacht K., Rajkai K., Fodor N. & Sándor R. 2012. Plants and biological soil crust influence the hydrophysical parameters and water flow in aeolian sandy soil. J. Hydrol. Hydromech. 60: 309–318.

    Article  Google Scholar 

  • Lichner Ľ., Capuliak J., Zhukova N., Holko L., Czachor H. & Kollár J. 2013a. Pines influence hydrophysical parameters and water flow in a sandy soil. Biologia 68. 1104–1108.

    Article  CAS  Google Scholar 

  • Lichner L., Dušek J., Dekker L.W., Zhukova N., Faško P., Holko L. & Šír M. 2013b. Comparison of two methods to assess heterogeneity of water flow in soils. J. Hydrol. Hydromech. 61: 299–304.

    Article  Google Scholar 

  • Loades K.W., Bengough A.G., Bransby M.F. & Hallett P.D. 2013. Biomechanics of nodal, seminal and lateral roots of barley: effects of diameter, waterlogging and mechanical impedance. Plant Soil 370: 407–418.

    Article  CAS  Google Scholar 

  • Mooney S.J. & Morris C. 2008. A morphological approach to understanding preferential flow using image analysis with dye tracer and x-ray Computer Tomography. Catena 73: 204–211.

    Article  Google Scholar 

  • Moran C.J., Pierret A. & Stevenson A.W. 2000. X-ray absorption and phase contrast imaging to study the interplay between plant roots and soil structure. Plant Soil 223: 99–115.

    Article  CAS  Google Scholar 

  • Moradi A.B., Conesa H.M., Robinson B., Lehmann E., Kuehne G., Kaestner A., Oswald S. & Schulin R. 2009. Neutron radiography as a tool for revealing root development in soil: capabilities and limitations. Plant Soil 318: 243–255.

    Article  CAS  Google Scholar 

  • Moradi A.B., Hopmans J.W., Oswald S.E., Menon M., Carminati A. & Lehmann E. 2013. Applications of Neutron Imaging in Soil–Water–Root Systems, pp. 113–136. In: Anderson S.A. & Hopmans J.W. (eds). Soil–Water–Root Processes: Advances in Tomography and Imaging, American Society of Agronomy, Soil Science Society of America, Crop Science Society of America, Madison, USA.

    Google Scholar 

  • Morris C. & Mooney S.J. 2004. A high-resolution system for the quantification of preferential flow in undisturbed soil using observations of tracers. Geoderma 118: 133–143.

    Article  Google Scholar 

  • Morris C., Mooney S.J. & Young S.D. 2008. Sorption and desorption characteristics of the dye tracer, Brilliant Blue FCF, in sandy and clay soils. Geoderma 146: 434–438.

    Article  CAS  Google Scholar 

  • Nikodem A., Pavlů L., Kodešová R., Borůvka L. & Drábek O. 2013. Study of podzolization process under different vegetation cover in the Jizerské hory Mts. region. Soil Water Res. 8: 1–12.

    Article  CAS  Google Scholar 

  • Nobles M.M., Wilding L.P. & McInnes K.J. 2004. Submicroscopic measurements of tracer distribution related to surface features of soil aggregates. Geoderma 123: 83–97.

    Article  Google Scholar 

  • Nobles M.M., Wilding L.P. & Lin H.S. 2010. Flow pathways of bromide and Brilliant Blue FCF tracer in caliche soils. J. Hydrol. 393: 114–122.

    Article  CAS  Google Scholar 

  • Oswald S.E., Menon M., Carminati A., Vontobel P., Lehmann E. & Schulin R. 2008. Quantitative imaging of infiltration, root growth, and root water uptake via neutron radiography. Vadose Zone J. 7. 1035–1047.

    Article  Google Scholar 

  • Persson M. 2005. Accurate tracer concentration estimations using image analysis. Soil Sci. Soc. Am. J. 69: 967–975.

    Article  CAS  Google Scholar 

  • Rudolph N., Esser H.G., Carminati A., Moradi A.B., Hilger A., Kardjilov N., Nagl S. & Oswald S.E. 2012. Dynamic oxygen mapping in the root zone by fluorescence dye imaging combined with neutron radiography. J. Soil Sediment. 12: 63–74.

    Article  CAS  Google Scholar 

  • Rudolph-Mohr N., Vontobel P. & Oswald S.E. 2014. A multiimaging approach to study the root–soil interface. Ann. Bot. 114. 1779–1787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sander T. & Gerke H.H. 2007. Preferential flow patterns in paddy fields using a dye tracer. Vadose Zone J. 6: 105–115.

    Article  Google Scholar 

  • Sander T. & Gerke H.H. 2009. Modelling field-data of preferential flow in paddy soil induced by earthworm burrows. J. Contam. Hydrol. 104: 126–136.

    Article  CAS  PubMed  Google Scholar 

  • Stingaciu L., Schulz H., Pohlmeier A., Behnke S., Zilken H., Javaux M. & Vereecken H. 2013. In situ root system architecture extraction from magnetic resonance imaging for water uptake modeling. Vadose Zone J. 12(1). doi: 10.2136/vzj2012.0019.

    Google Scholar 

  • Stoops G. 2003. Guidelines for Analysis and Desription of Soils and Regolith Thin Sections (with CD-ROM). Soil Science Society of America, Inc. Madison, Wisconsin, USA, 184 pp.

    Google Scholar 

  • Young I.M. 1998. Biophysical interactions at the root-soil interface: a review. J. Agr. Sci. 130: 1–7.

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the financial support of the Czech Science Foundation (No. 526/08/0434 and 13-12477S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radka Kodešová.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kodešová, R., Němeček, K., Žigová, A. et al. Using dye tracer for visualizing roots impact on soil structure and soil porous system. Biologia 70, 1439–1443 (2015). https://doi.org/10.1515/biolog-2015-0166

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2015-0166

Key words

Navigation