Skip to main content
Log in

The effect of nitrogen level on rice growth, carbon-nitrogen metabolism and gene expression

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

As one of the essential macroelements, nitrogen (N) plays an important role in plant growth and development. In order to know the effect of different N levels on the rice plant growth and carbon-nitrogen metabolism, we analyzed the rice growth phenotype, leaf SPAD value, photosynthesis, carbon-nitrogen metabolic status and gene expression profile under four different N levels (0×N, 0.1×N, 1×N and 5×N). The plant height and dry weight increased with increasing N levels, whereas an opposite trend was observed for the root length, which decreased with increasing N levels. The leaf SPAD value, stem nitrate concentration, soluble proteins, photosynthetic rate, stomatal conductance and total nitrogen concentration increased with increasing N levels, whereas an opposite trend was observed for soluble carbohydrates and carbon/nitrogen ratio which decreased with increasing N levels. Metabolite profile analysis revealed that the low N treatment caused visible decreases in the concentrations of total sugars and organic acids in the leaves, while caused visible increases in the concentrations of total sugars, organic acids and free amino acids in the roots. Gene expression analysis showed that the transcriptional levels of 5 genes (GS1;3, NADH-GOGAT1, NADH-GOGAT2, PEPC4 and PEPC7) altered significantly under four different N levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agüera E., Cabello P. & de la Haba P. 2010. Induction of leaf senescence by low nitrogen nutrition in sunflower (Helianthus annuus) plants. Physiol. Plantarum 138: 256–267.

    Article  CAS  Google Scholar 

  • Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein binding. Anal. Biochem. 72: 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Chen X., Cui Z., Vitousek P.M., Cassman K.G., Matson P.A., Bai J., Meng Q., Hou P., Yue S., Römheld V. & Zhang F. 2011. Integrated soil-crop system management for food security. Proc. Natl. Acad. Sci. 108: 6399–6404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coruzzi G.M. & Zhou L. 2001. Carbon and nitrogen sensing and signaling in plants: emerging ‘matrix effects’. Curr. Opin. Plant Biol. 4: 247–253.

    Article  CAS  PubMed  Google Scholar 

  • Crawford N.M. & Forde B.G. 2002. Molecular and developmental biology of inorganic nitrogen nutrition. In: Meyerowitz E. & Somerville C. (eds), The Arabidopsis Book, American Society of Plant Biologists, Rockville, MD.

    Google Scholar 

  • Diaz C., Purdy S., Christ A., Morot-Gaudry J.F., Wingler A. & Masclaux-Daubresse C. 2005. Characterization of markers to determine the extent and variability of leaf senescence in Arabidopsis. A metabolic profiling approach. Plant Physiol. 138: 898–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diaz C., Saliba-Colombani V., Loudet O., Belluomo P., Moreau L., Daniel-Vedele F., Morot-Gaudry J.-F. & Masclaux-Daubresse C. 2006. Leaf yellowing and anthocyanin accumulation are two genetically independent strategies in response to nitrogen limitation in Arabidopsis thaliana. Plant Cell Physiol. 47: 74–83.

    Article  CAS  PubMed  Google Scholar 

  • Ding L., Wang K.J., Jiang G.M., Biswas D.K., Xu H., Li L.F. & Li Y.H. 2005. Effects of nitrogen deficiency on photosynthetic traits of maize hybrids released in different years. Ann. Bot. (London) 96: 925–930.

    Article  CAS  Google Scholar 

  • Frink C.R., Waggoner P.E. & Ausubel J.H. 1999. Nitrogen fertilizer: retrospect and prospect. Proc. Natl. Acad. Sci. USA. 96: 1175–1180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galloway J.N., Townsend A.R., Erisman J.W., Bekunda M., Cai Z., Freney J.R., Martinelli L.A., Seitzinger S.P. & Sutton M.A. 2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320: 889–892.

    Article  CAS  PubMed  Google Scholar 

  • Garnett T., Conn V. & Kaiser B.N. 2009. Root based approaches to improving nitrogen use efficiency in plants. Plant Cell Environ. 32: 1272–1283.

    Article  CAS  PubMed  Google Scholar 

  • Gebbing T. & Schnyder H. 1999. Pre-anthesis reserve utilization for protein and carbohydrate synthesis in grains of wheat. Plant Physiol. 121: 871–878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gebbing T., Schnyder H. & Kuhbauch W. 1999. The utilization of pre-anthesis reserves in grain filling of wheat: assessment by 13C/12C steady-state labelling. Plant Cell Environ. 22: 857–858.

    Article  Google Scholar 

  • Godfray H.C.J. 2010. Food security: the challenge of feeding 9 billion people. Science 327: 812–818.

    Article  CAS  PubMed  Google Scholar 

  • Good A.G., Shrawat A.K. & Muench D.G. 2004. Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci. 9: 597–605.

    Article  CAS  PubMed  Google Scholar 

  • Guo J.H., Liu X.J., Zhang Y., Shen J.L., Han W.X., Zhang W.F., Christie P., Goulding K.W.T., Vitousek P.M. & Zhang F.S. 2010. Significant acidification in major Chinese croplands. Science 327: 1008–1010.

    Article  CAS  PubMed  Google Scholar 

  • Hirano T., Saito Y., Ushimaru H. & Michiyama H. 2005. The effect of the amount of nitrogen fertilizer on starch metabolism in leaf sheath of japonica and indica rice varieties during the heading period. Plant Prod. Sci. 8: 122–130.

    Article  CAS  Google Scholar 

  • Hodge A. 2006. Plastic plants and patchy soils. J. Exp. Bot. 57: 401–411.

    Article  CAS  PubMed  Google Scholar 

  • Krapp A., Ferrario-Méry S. & Touraine B. 2002. Nitrogen and signaling. In: Foyer C. & Noctor G. (eds), Photosynthetic Nitrogen Assimilation and Associated Carbon and Respiratory Metabolism. Advances in Photosynthesis and Respiration, vol 12. Springer, Dordrecht, pp 205–225.

    Google Scholar 

  • Krapp A. & Truong H.N. 2005. Regulation of C/N interaction in model plant species. In: Goyal S. Tischner R. & Basra A. (eds), Enhancing the Efficiency of Nitrogen Utilization in Plants. Haworth Press, New York, pp 127–173.

    Google Scholar 

  • Kusano M., Fukushima A., Arita M., Jonsson P., Moritz T., Kobayashi M., Hayashi N., Tohge T. & Saito K. 2007a. Unbiased characterization of genotype-dependent metabolic regulations by metabolomic approach in Arabidopsis thaliana. BMC Syst. Biol. 1: 53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kusano M., Fukushima A., Kobayashi M., Hayashi N., Jonsson P., Moritz T., Ebana K. & Saito K. 2007b. Application of a metabolomic method combining one-dimensional and two-dimensional gas chromatographytime-of-flight/mass spectrometry to metabolic phenotyping of natural variants in rice. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 855: 71–79.

    Article  CAS  PubMed  Google Scholar 

  • Liu J., You L., Amini M., Obersteiner M., Herreroe M., Zehnder A.J.B. & Yang H. 2010. A high-resolution assessment on global nitrogen flows in cropland. Proc. Natl. Acad. Sci. 107: 8035–8040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maness N. 2010. Extraction and analysis of soluble carbohydrates. Methods Mol. Biol. 639: 341–370.

    Article  CAS  PubMed  Google Scholar 

  • Martin T., Oswald O. & Graham I.A. 2002. Arabidopsis seedling growth, storage lipid mobilization and photosynthetic gene expression are regulated by carbon: nitrogen availability. Plant Physiol. 128: 472–481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masclaux-Daubresse C., Purdy S., Lemantre T., Pourtau N., Taconnat L., Renou J.-P. & Wingler A. 2007. Genetic variation suggests interaction between cold acclimation and metabolic regulation of leaf senescence. Plant Physiol. 143: 434–446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melo P.M., Lima L.M., Santos I.M., Carvalho H.G. & Cullimore J.V. 2003. Expression of the plastid-located glutamine synthetase of Medicago truncatula: accumulation of the precursor in root nodules reveals an in vivo control at the level of protein import into plastids. Plant Physiol. 132: 390–399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohd-Radzman N.A., Djordjevic M.A. & Imin N. 2013. Nitrogen modulation of legume root architecture signaling pathways involves phytohormones and small regulatory molecules. Front. Plant Sci. 4: 1–7.

    Article  Google Scholar 

  • Morris D.L. 1948 Quantitative determination of carbohydrates with Dreywood’s anthrone reagent. Science 107: 254–255.

    Article  CAS  PubMed  Google Scholar 

  • Nunes-Nesi A., Fernie A.R. & Stitt M. 2010. Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions. Mol. Plant 3: 973–996.

    Article  CAS  PubMed  Google Scholar 

  • Pan J., Cui K., Wei D., Huang J., Xiang J. & Nie L. 2011. Relationships of non-structural carbohydrates accumulation and translocation with yield formation in rice recombinant inbred lines under two nitrogen levels. Physiol. Plant. 141: 321–331.

    Article  CAS  PubMed  Google Scholar 

  • Redestig H., Fukushima A., Stenlund H., Moritz T., Arita M., Saito K. & Kusano M. 2009. Compensation for systematic cross-contribution improves normalization of mass spectrometry based metabolomics data. Analyt. Chem. 81: 7974–7980.

    Article  CAS  Google Scholar 

  • Robinson D., Hodge A., Griffiths B.S. & Fitter A.H. 1999. Plant root proliferation in nitrogen-rich patches confers competitive advantage. Proc. Biol. Sci. 266: 431–435.

    Article  PubMed Central  Google Scholar 

  • Ruffel S., Krouk G., Ristova D., Shasha D., Birnbaum K.D. & Coruzzi G.M. 2011. Nitrogen economics of root foraging: transitive closure of the nitrate-cytokinin relay and distinct systemic signaling for Nsupplyvs demand. Proc. Natl. Acad. Sci. USA 108: 18524–18529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruuska S.A., Lewis D.C., Kennedy G., Furbank R.T., Jenkins C.L.D. & Tabe L.M. 2008. Large scale transcriptome analysis of the effects of nitrogen nutrition on accumulation of stem carbohydrate in reproductive-stage wheat. Plant Mol. Biol. 66: 15–32.

    Article  CAS  PubMed  Google Scholar 

  • Scofield G.N., Ruuska S.A., Aoki N., Lewis D.C., Tabe L.M. & Jenkins C.L.D. 2009. Starch storage in the stems of wheat plants: localization and temporal changes. Ann. Bot. (London) 103: 859–868.

    Article  CAS  Google Scholar 

  • Socolow R. 1999. Nitrogen management and the future of food: Lessons from the management of energy and carbon. Proc. Natl. Acad. Sci. USA 96: 6001–6008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stitt M., Krapp A. 1999. The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant Cell Envrion. 22: 583–621.

    Article  CAS  Google Scholar 

  • Tilman D., Fargione J., Wolff B., D’Antonio C., Dobson A., Howarth R., Schindler D., Schlesingerm W.H., Simberloff D. & Swackhamer D. 2001. Forecasting agriculturally driven global environmental change. Science 292: 281–284.

    Article  CAS  PubMed  Google Scholar 

  • Vitousek P.M., Naylor R., Crews T., David M.B., Drinkwater L.E., Holland E., Johnes P.J., Katzenberger J., Martinelli L.A., Matson P.A., Nziguheba G., Ojima D., Palm C.A., Robertson G.P., Sanchez P.A., Townsend A.R. & Zhang F. 2009. Nutrient imbalances in agricultural development. Science 324: 1519–1920.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida S., Forno D.A., Cook J.H. & Gomez K.A. 1976. Laboratory manual for physiological studies of rice, 3rd ed., International Rice Research Institute, Manila.

    Google Scholar 

  • Walch-Liu P., Ivanov I.I., Filleur S., Gan Y., Remans T. & Forde B.G. 2006. Nitrogen regulation of root branching. Ann. Bot. 97: 875–881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wingler A., Purdy S., Maclean J.A. & Pourtau N. 2006. The role of sugars in integrating environmental signals during the regulation of leaf senescence. J. Exp. Bot. 57: 391–399.

    Article  CAS  PubMed  Google Scholar 

  • Wingler A., von Schaewen A., Leegood R.C., Lea P.J. & Quick W.P. 1998. Regulation of leaf senescence by cytokinin, sugars, and light. Effect on NADH-dependent hydroxypyruvate reductase. Plant Physiol. 116: 329–335.

    Article  CAS  PubMed Central  Google Scholar 

  • Yoshida S. & Ahn S.B. 1968. The accumulation process of carbohydrate in rice varieties in relation to their response to nitrogen in the tropics. Soil Sci. Plant Nutr. 14: 153–162.

    Article  CAS  Google Scholar 

  • Yoshida S., Forno D.A., Cook J.H. & Gomez K.A. 1976. Laboratory manual for physiological studies of rice, 3rd ed., International Rice Research Institute, Manila.

    Google Scholar 

  • Zhang F., Cui Z., Fan M., Zhang W., Chen X. & Jiang R. 2011. Integrated soil-crop system management: reducing environmental risk while increasing crop productivity and improving nutrient use efficiency in China. J. Environ. Qual. 40: 1051–1057.

    Article  CAS  PubMed  Google Scholar 

  • Zhang H., Jennings A., Barlow P.W. & Forde B.G. 1999. Dual pathways for regulation of root branching by nitrate. Proc. Natl. Acad. Sci. USA 96: 6529–6534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q. 2007. Strategies for developing green super rice. Proc. Natl. Acad. Sci. USA 104: 16402–16409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Z. 2009. Carbon and nitrogen nutrient balance signaling in plants. Plant Signal. Behav. 4: 584–591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Z. & Chen D. 2010. Nitrogen fertilizer use in China — contributions to food production, impacts on the environment and best management strategies. Nutr. Cycl. Agroecosyst. 63: 117–127.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongmei Cai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Z., Bao, A., Li, H. et al. The effect of nitrogen level on rice growth, carbon-nitrogen metabolism and gene expression. Biologia 70, 1340–1350 (2015). https://doi.org/10.1515/biolog-2015-0148

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2015-0148

Key words

Navigation