Skip to main content
Log in

Expression of dopamine and adrenergic receptors in mouse embryonic stem cells and preimplantation embryos

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Using RT-PCR we examined expression of dopamine and adrenergic receptors in undifferentiated and spontaneously differentiating mouse embryonic stem (ES) cells. We also examined expression of dopamine receptor subtypes in mouse ovulated oocytes and preimplantation embryos. Comparing the expression of catecholamine receptors in undifferentiated mouse ES cells and in blastocysts (from which ES cells are derived), we found that transcripts of all five dopamine receptors were expressed in both cell types. In contrast, we detected eight adrenergic receptor subtypes in undifferentiated mouse ES cells, but only three subtypes were found in mouse blastocysts. In three adrenergic receptors (α1D, α2B, β1), we found higher expression in the spontaneously differentiating ES cells than in undifferentiated ES cells, and the α1B adrenoceptor was not even detectable in the undifferentiated cells. These results indicate that genes encoding all types of catecholamine receptors are transcribed in mouse ES cells, and some of them are differentially expressed during ES cell differentiation. We found several profiles of dopamine receptor mRNA expression during the preimplantation period. The DR3 transcript was present in all examined stages (oocytes, 4-cell embryos, 8- to 16-cell embryos, blastocysts). DR1 and DR4 transcripts were not found in oocytes, but we detected them in preimplantation embryos. The DR2 receptor transcript was found in all examined stages except for the 4-cell embryos, and the DR5 receptor transcript was found in all examined stages except for the 8- to 16-cell embryos. The expression profiles of dopamine receptor transcripts suggest different roles of some receptor subtypes in particular preimplantation developmental stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BMP4:

bone morphogenic protein 4

ES:

embryonic stem

LIF:

leukemia inhibitory factor

PBS:

phosphate-buffered saline

SSEA-1:

stage-specific embryonic antigen-1

References

  • Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W. & Lipman DJ. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389–3402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beaulieu J.M. & Gainetdinov R.R. 2011. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol. Rev. 63: 182–217.

    Article  CAS  PubMed  Google Scholar 

  • Bodis J., Hartmann G., Tinneberg H.R., Torok A., Hanf V., Papenfuss F. & Schwarz H. 1993. Relationship between the monoamine, progesterone and estradiol content in follicular fluid of preovulatory graafian follicles after superovulation treatment. Gynecol. Obstet. Invest. 35: 232–235.

    Article  CAS  PubMed  Google Scholar 

  • Burkuš J., Čikoš Š., Fabian D., Kubandová J., Czikková S. & Koppel J. 2013. Maternal restraint stress negatively influailences growth capacity of preimplantation mouse embryos. Gen. Physiol. Biophys. 32: 129–137.

    Article  PubMed  Google Scholar 

  • Buznikov G.A., Lambert H.W. & Lauder J.M. 2001. Serotonin and serotonin-like substances as regulators of early embryogenesis and morphogenesis. Cell Tissue Res. 305: 177–186.

    Article  CAS  PubMed  Google Scholar 

  • Buznikov G.A., Shmukler Y.B. & Lauder J.M. 1996. From oocyte to neuron: do neurotransmitters function in the same way throughout development? Cell Mol. Neurobiol. 16: 533–559.

    Article  Google Scholar 

  • Čikoš Š., Czikková S., Chrenek P., Makarevich A.V., Burkuš J., Janštová Ž., Fabian D. & Koppel J. 2014. Expression of adrenergic receptors in bovine and rabbit oocytes and preim-plantation embryos. Reprod. Domest. Anim. 49: 92–100.

    Article  PubMed  CAS  Google Scholar 

  • Čikoš Š., Fabian D., Makarevich A.V., Chrenek P & Koppel J. 2011. Biogenic monoamines in preimplantation development. Hum. Reprod. 26: 2296–3005.

    Article  PubMed  Google Scholar 

  • Čikoš Š., Rehák P., Czikková S., Veselá J. & Koppel J. 2007. Expression of adrenergic receptors in mouse preimplanta-tion embryos and ovulated oocytes. Reproduction 133: 1139–1147.

    Article  PubMed  CAS  Google Scholar 

  • Čikoš Š., Veselá J., Iľková G., Rehák P., Czikková S. & Koppel J. 2005. Expression of β adrenergic receptors in mouse oocytes and preimplantation embryos. Mol. Reprod. Dev. 71: 145–153.

    Article  PubMed  CAS  Google Scholar 

  • Faherty S., Fitzgerald A., Keohan M. & Quinlan L.R. 2007. Self-renewal and differentiation of mouse embryonic stem cells as measured by Oct4 expression: the role of the cAMP/PKA pathway. In Vitro Cell. Dev. Biol. Anim. 43: 37–47.

    Article  CAS  Google Scholar 

  • Furue M., Okamoto T., Hayashi Y., Okochi H., Fujimoto M., Myoishi Y., Abe T., Ohnuma K., Sato G.H., Asashima M. & Sato J.D. 2005. Leukemia inhibitory factor as an anti-apoptotic mitogen for pluripotent mouse embryonic stem cells in a serum-free medium without feeder cells. In Vitro Cell. Dev. Biol. Anim. 41: 19–28.

    Article  CAS  PubMed  Google Scholar 

  • Herlenius E. & Lagercrantz H. 2001. Neurotransmitters and neu-romodulators during early human development. Early Hum. Dev. 65: 21–37.

    Article  CAS  PubMed  Google Scholar 

  • Higgins D.G., Thompson J.D. & Gibson T.J. 1996. Using CLUSTAL for multiple sequence alignments. Methods En-zymol. 266: 383–402.

    Article  CAS  Google Scholar 

  • Hirabayashi M., Teppei G., Chichiro T., Makoto S., Hiromasa H. & Shinishi H. 2014. Effect of leukemia inhibitory factor and forskolin on establishment of rat embryonic stem cell lines. J. Reprod. Dev. 60: 78–82.

    Article  CAS  PubMed  Google Scholar 

  • Ishizuka T. & Watanabe Y. 2011. α1-Adrenoceptor stimulation enhances leukemia inhibitory factor-induced proliferation of mouse-induced pluripotent stem cells. Eur. J. Pharmacol. 668: 42–56.

    Article  CAS  PubMed  Google Scholar 

  • Ishizuka T., Goshima H., Ozawa A. & Watanabe Y. 2012. β1-Adrenoceptor stimulation enhances the differentiation of mouse induced pluripotent stem cells into neural progenitor cells. Neurosci. Lett. 525: 60–65.

    Article  CAS  PubMed  Google Scholar 

  • Ishizuka T., Goshima H., Ozawa A. & Watanabe Y. 2013. Stimulation of α1-adrenoceptor or angiotensin type 1 receptor enhances DNA synthesis in human-induced pluripotent stem cells via Gq-coupled receptor-dependent signaling pathways. Eur. J. Pharmacol. 714: 202–209.

    Article  CAS  PubMed  Google Scholar 

  • Ishizuka T., Goshima H., Ozawa A. & Watanabe Y. 2014. Involvement of β-adrenoceptors in the differentiation of human induced pluripotent stem cells into mesodermal progenitor cells. Eur. J. Pharmacol. 740: 28–34.

    Article  CAS  PubMed  Google Scholar 

  • Itoh M.T., Ishizuka B., Kuribayashi Y., Abe Y. & Sumi Y. 2000. Noradrenaline concentrations in human preovulatory follicular fluid exceed those in peripheral plasma. Exp. Clin. Endocrinol. Diabetes 108: 506–509.

    Article  CAS  PubMed  Google Scholar 

  • Jung D.W., Kim W.H. & Williams D.R. 2014. Reprogram or reboot: small molecule approaches for the production of induced pluripotent stem cells and direct cell reprogramming. ACS Chem. Biol. 9: 80–95.

    Article  CAS  PubMed  Google Scholar 

  • Khatchadourian C., Menezo Y., Gerard M. & Thibault C. 1987. Catecholamines within the rabbit oviduct at fertilization time. Hum. Reprod. 2: 1–5.

    Article  CAS  PubMed  Google Scholar 

  • Kim M.O., Na S.I., Lee M.Y., Heo J.S. & Han H.J. 2008. Epinephrine increases DNA synthesis via ERK1/2s through cAMP, Ca2+/PKC, and PI3K/Akt signaling pathways in mouse embryonic stem cells. J. Cell Biochem. 104: 1407–1420.

    Article  CAS  PubMed  Google Scholar 

  • Kotwica G., Kurowicka B., Franczak A., Grzegorzewski W., Wrobel M., Mlynarczuk J. & Kotwica J. 2003. The concetrations of catecholamines and oxytocin receptors in the oviduct and its contractile activity in cows during the estrous cycle. Theriogenology 15: 953–964.

    Article  CAS  Google Scholar 

  • Lauder JM. 1993. Neurotransmitters as growth regulatory signals: role of receptors and second messengers. Trends Neurosci. 16: 233–239.

    Article  CAS  PubMed  Google Scholar 

  • Lawits J.A. & Biggers J.D. 1993. Culture of preimplantation embryos. Methods Enzymol. 225: 153–164.

    Article  Google Scholar 

  • Layden B.T., Newman M., Chen F., Fisher A. & Lowe W.L. Jr. 2010. G protein coupled receptors in embryonic stem cells: a role for Gs-α signaling. PLoS One 5: e9105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee M.Y., Heo J.S. & Han H.J. 2006. Dopamine regulates cell cycle regulatory proteins via cAMP, Ca2+/PKC, MAPKs, and NF-κB in mouse embryonic stem cells. J. Cell. Physiol. 208: 399–406.

    Article  CAS  PubMed  Google Scholar 

  • Limbird L.E. 2011. Historical perspective for understanding of adrenergic receptors. Curr. Top. Membr. 67: 1–17.

    Article  CAS  PubMed  Google Scholar 

  • Markova L.N., Sadykova K.A. & Sakharova N.I.U. 1990. The effect of biogenic monoamine antagonists on the development of preimplantation mouse embryos cultured in vitro. Zh. Evol. Biokhim. 26: 726–732.

    CAS  Google Scholar 

  • Mihalik J., Kravcuková P., Spakovská T., Mareková M. & Schmidtová K. 2008. Study of high deprenyl dose on the preimlantation embryo development and lymphocyte DNA in rat. Gen. Physiol. Biophys. 27: 121–126.

    CAS  PubMed  Google Scholar 

  • Mihalik J., Mašlanková J., Špakovská T., Mareková M., Hodor-ová I., Kušnír J., Rybárová S., Ferenc P. & Schmidtová K. 2010. Impact of 2 doses of clorgyline on the rat preimplanta-tion embryo development and the monoamine levels in urine. Reprod. Sci. 17: 734–741.

    Article  CAS  PubMed  Google Scholar 

  • Pendleton R.G., Rasheed A., Roychowdhury R. & Hillman R. 1998. A new role for catecholamines: ontogenesis. Trends Pharmacol. Sci. 19: 248–251.

    Article  CAS  PubMed  Google Scholar 

  • Sharov A.A., Piao Y., Matoba R., Dudekula D.B., Qian Y., Van-Buren V., Falco G., Martin P.R., Stagg C.A., Bassey U.C., Wang Y., Carter M.G., Hamatani T., Aiba K., Akutsu H., Sharova L., Tanaka T.S., Kimber W.L., Yoshikawa T., Jaradat S.A., Pantano S., Nagaraja R., Boheler K.R., Taub D., Hodes R.J., Longo D.L., Schlessinger D., Keller J., Klotz E., Kelsoe G., Umezawa A., Vescovi A.L., Rossant J., Kunath T., Hogan B.L., Curci A., D’Urso M., Kelso J., Hide W. & Ko M.S. 2003. Transcriptome analysis of mouse stem cells and early embryos. PLoS Biol. 1: E74.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun F., Yang X.J., Lv H.Y., Tang Y.B., An S.M., Ding X.P., Li W.B., Teng L., Shen Y. Chen H.Z. & Zhu L. 2015. β2-Adrenoreceptor-mediated proliferation inhibition of embryonic pluripotent stem cells. J. Cell. Physiol. 230: 2640–2646.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka T.S., Kunath T., Kimber W.L., Jaradat S.A., Stagg C.A., Usuda M., Yokota T., Niwa H., Rossant J. & Ko M.S. 2002. Gene expression profiling of embryo-derived stem cells reveals candidate genes associated with pluripotency and lineage specificity. Genome Res. 12: 1921–1928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang F., Barbacioru C., Bao S., Lee C., Nordman E., Wang X., Lao K. & Surani M.A. 2010. Tracing the derivation of embryonic stem cells from the inner cell mass by single-cell RNA-Seq analysis. Cell Stem Cell 6: 468–478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Temeles G.L., Ram P.T., Rothstein J.L. & Schultz R.M. 1994. Expression patterns of novel genes during mouse preimplantation embryogenesis. Mol. Reprod. Dev. 37: 121–129.

    Article  CAS  PubMed  Google Scholar 

  • Way A.L., Barbato G.F. & Killian G.J. 2001. Identification of norepinephrine in bovine oviductal fluid by high performance liquid chromatography. Life Sci. 70: 567–576.

    Article  CAS  PubMed  Google Scholar 

  • Weiss E.R., Maness P. & Lauder J.M. 1998. Why do neurotrans-mitters act like growth factors? Persp. Dev. Neurobiol. 5: 323–335.

    CAS  Google Scholar 

  • Ying Q.L., Nichols J., Chambers I. & Smith A. 2003. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115: 281–292.

    Article  CAS  PubMed  Google Scholar 

  • Zhang S.Y., Wang J.Z., Li J.J., Wei D.L., Sui H.S., Zhang Z.H., Zhou P. & Tan J.H. 2011. Maternal restraint stress diminishes the developmental potential of oocytes. Biol. Reprod. 84: 672–681.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Slovak Research and Development Agency [No. APVV-0815-11], the Slovak Academy of Sciences [VEGA 2/0039/15], and the Research & Development Operational Program funded by the ERDF [No. 26220120001 and 26220120043]. Štefan Čikoš, Dušan Fabian, Ján Burkuš and Juraj Koppel are members of the COST Action FA1201 Epiconcept: “Epigenetics and Periconceptionenvironment“.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Štefan Čikoš.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Čikoš, Š., Fabian, D., Burkuš, J. et al. Expression of dopamine and adrenergic receptors in mouse embryonic stem cells and preimplantation embryos. Biologia 70, 1263–1271 (2015). https://doi.org/10.1515/biolog-2015-0141

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2015-0141

Key words

Navigation