Skip to main content
Log in

Mitochondrial structures during seed germination and early seedling development in Arabidopsis thaliana

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Mitochondrial morphology and evolution have been observed during seed germination and early seedling development in Arabidopsis thaliana line 43a9 (ecotype Columbia) expressing green fluorescent protein in these organelles. Fluorescence, confocal and electronic microscopy images reveal that mitochondrial development goes through different stages, and that the organelle structure varies with cell types during these processes. Mitochondria develop from larger, isodiametric structures pre-existent in the dry seed called promitochondria. After germination, variations in mitochondrial morphology occur synchronously with cell differentiation and cell division in the course of early root development. Some promitochondria develop into intermediate structures resembling the syncytial organelles. These structures have been described in certain plants under hypoxia as intermediates for the formation of mature mitochondria. On the other hand, other promitochondria temporarily remain in the cells of the root apex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CycB1 :

cyclin-dependent protein kinase B1

GFP:

green fluorescent protein

TEM:

transmission electron microscope

References

  • Attucci S., Carde J.P., Raymond P., Saint-Gès V., Spiteri A. & Pradet A. 1991. Oxidative phosphorylation by mitochondria extracted from dry sunflower seeds. Plant Physiol. 95: 390–398.

    Article  CAS  Google Scholar 

  • Barrôco R.M., Van Poucke K., Bergervoet J.H.W., De Veylder L., Groot S.P.C., Inzé D. & Engler G. 2005. The role of the cell cycle machinery in resumption of postembryonic development. Plant Physiol. 137: 127–140.

    Article  Google Scholar 

  • Bewley J.D. 1997. Seed germination and dormancy. Plant Cell 9: 1055–1066.

    Article  CAS  Google Scholar 

  • Bewley J.D. & Black M. 1994. Seeds: Physiology of Development and Germination, Plenum Press, New York, NY.

    Book  Google Scholar 

  • Carrie C., Murcha M.W., Giraud E., Ng S., Zhang M.F., Narsai R. & Whelan J. 2013. How do plants make mitochondria? Planta 237: 429–439.

    Article  CAS  Google Scholar 

  • Cervantes E., Javier Martín J., Ardanuy R., de Diego J.G. & Tocino Á. 2010. Modeling the Arabidopsis seed shape by a cardioid: efficacy of the adjustment with a scale change with factor equal to the Golden Ratio and analysis of seed shape in ethylene mutants. J. Plant Physiol. 167: 408–410.

    Article  CAS  Google Scholar 

  • Colón-Carmona A., You R., Haimovitch-Gal T. & Doerner P. 1999. Spatio-temporal analysis of mitotic activity with a labile cyclin-GUS fusion protein. Plant J. 20: 503–508.

    Article  Google Scholar 

  • de Diego J.G., David Rodriguez F., Rodríguez Lorenzo J.L. & Cervantes E. 2007. The prohibitin genes in Arabidopsis thaliana: expression in seeds, hormonal regulation and possible role in cell cycle control during seed germination. J. Plant Physiol. 164: 371–373.

    Article  Google Scholar 

  • de Diego J.G., Rodríguez F.D., Rodríguez J.L., Cervantes E. & P.G. 2006. cDNA-AFLP analysis of seed germination in Arabidopsis thaliana identifies transposons and new genomic sequences. J. Plant Physiol. 163: 452–462.

    Article  Google Scholar 

  • Gallardo K., Job C., Groot S.P.C., Puype M., Demol H., Vandekerckhove J. & Job D. 2002. Importance of methionine biosynthesis for Arabidopsis seed germination and seedling growth. Physiol. Plant 116: 238–247.

    Article  CAS  Google Scholar 

  • Hiramatsu T., Misumi O., Kuroiwa T. & Nakamura S. 2006. Morphological changes in mitochondrial and chloroplast nucleoids and mitochondria during the Chlamydomonas reinhardtii (Chlorophyceae) cell cycle. J. Phycol. 42: 1048–1058.

    Article  Google Scholar 

  • Howell K.A., Millar A.H. & Whelan J. 2006. Ordered assembly of mitochondria during rice germination begins with promito-chondrial structures rich in components of the protein import apparatus. Plant Mol. Biol. 60: 201–223.

    Article  CAS  Google Scholar 

  • Howell K.A., Millar A.H. & Whelan J. 2007. Building the powerhouse: what are the signals involved in plant mitochondrial biogenesis? Plant Signal. Behav. 2: 428–430.

    Article  Google Scholar 

  • Koornneef M. & Meinke D. 2010. The development of Arabidopsis as a model plant. Plant J. 61: 909–921.

    Article  CAS  Google Scholar 

  • Li P., Jiao J., Gao G. & Prabhakar B.S. 2012. Control of mitochondrial activity by miRNAs. J. Cell. Biochem. 113: 1104–1110.

    Article  CAS  Google Scholar 

  • Logan D.C. 2010. The dynamic plant chondriome. Semin. Cell Dev. Biol. 21: 550–557.

    Article  CAS  Google Scholar 

  • Logan D.C. & Leaver C.J. 2000. Mitochondria-targeted GFP highlights the heterogeneity of mitochondrial shape, size and movement within living plant cells. J. Exp. Bot. 51: 865–871.

    Article  CAS  Google Scholar 

  • Logan D.C., Millar A.H., Sweetlove L.J., Hill S.A. & Leaver C.J. 2001. Mitochondrial biogenesis during germination in maize embryos. Plant Physiol. 125: 662–672.

    Article  CAS  Google Scholar 

  • Martin J.J., Tocino Á., Ardanuy R., Juana G. & Cervantes E. 2014. Dynamic analysis of Arabidopsis seed shape reveals differences in cellulose mutants. Acta Physiol. Plant. 36: 1585–1592.

    Article  CAS  Google Scholar 

  • Merkwirth C. & Langer T. 2009. Prohibitin function within mitochondria: essential roles for cell proliferation and cristae morphogenesis. Biochim. Biophys. Acta 1793: 27–32.

    Article  CAS  Google Scholar 

  • Oparka K.J., Gates P.J. & Boulter D. 1981. Regularly aligned mitochondria in aleurone and sub-aleurone layers of developing rice caryopses. Plant Cell Environ 4: 355–357.

    Article  Google Scholar 

  • Ramonell K.M., Kuang A., Porterfleld D.M., Crispí M.L., Xiao Y., McClure G. & Musgrave M.E. 2001. Influence of atmospheric oxygen on leaf structure and starch deposition in Arabidopsis thaliana. Plant Cell Environ. 24: 419–428.

    Article  CAS  Google Scholar 

  • Rolletschek H., Borisjuk L., Koschorreck M., Wobus U. & Weber H. 2002. Legume embryos develop in a hypoxic environment. J. Exp. Bot. 53: 1099–1107.

    Article  CAS  Google Scholar 

  • Rosenfeld E., Schaeffer J., Beauvoit B. & Salmon J.M. 2004. Isolation and properties of promitochondria from anaerobic stationary-phase yeast cells. Antonie Van Leeuwenhoek 85: 9–21.

    Article  CAS  Google Scholar 

  • Schiefelbein J.W., Masucci J.D. & Wang H. 1997. Building a root: the control of patterning and morphogenesis during root development. Plant Cell 9: 1089–1098.

    Article  CAS  Google Scholar 

  • Seguí-Simarro J.M., Coronado M.J. & Staehelin L.A. 2008. The mitochondrial cycle of Arabidopsis shoot apical meristem and leaf primordium meristematic cells is defined by a perinuclear tentaculate/cage-like mitochondrion. Plant Physiol. 148: 1380–1393.

    Article  Google Scholar 

  • Seguí-Simarro J.M. & Staehelin L. A. 2009. Mitochondrial reticulation in shoot apical meristem cells of Arabidopsis provides a mechanism for homogenization of mtDNA prior to gamete formation. Plant Signal. Behav. 4: 168–171.

    Article  Google Scholar 

  • Sheahan M.B., McCurdy D.W. & Rose R.J. 2005. Mitochondria as a connected population: ensuring continuity of the mitochondrial genome during plant cell dedifferentiation through massive mitochondrial fusion. Plant J. 44: 744–755.

    Article  CAS  Google Scholar 

  • Ubeda-Tomas S., Federici R., Casimiro I., Beemster G.T., Bhalerao R., Swarup R., Doerner P., Haseloff J. & Bennett M.J. 2009. Gibberellin signaling in the endodermis controls Arabidopsis root meristem size. Curr. Biol. 19: 1194–1199.

    Article  CAS  Google Scholar 

  • Van Gestel K. & Verbelen J.P. 2002. Giant mitochondria are a response to low oxygen pressure in cells of tobacco (Nicotíana tabacum L.). J. Exp. Bot. 53: 1215–1218.

    Article  Google Scholar 

  • Welchen E., Garcia L., Mansilla N. & Gonzalez D.H. 2014. Coordination of plant mitochondrial biogenesis: keeping pace with cellular requirements. Front. Plant Sci. 4: 551.

    Article  Google Scholar 

  • Yamamoto H., Morino K., Nishio Y., Ugi S., Yoshizaki T., Kashi-wagi A. & Maegawa H. 2012. MicroRNA-494 regulates mitochondrial biogenesis in skeletal muscle through mitochondrial transcription factor A and Forkhead box j3. Am. J. Physiol. Endocrinol. Metab. 303: E1419-E1427.

    Google Scholar 

  • Yoo B.Y. 1970. Ultrastructural changes in cells of pea embryo radicles during germination. J. Cell Biol. 45: 158–171.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José L. Rodríguez.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez, J.L., De Diego, J.G., Rodríguez, F.D. et al. Mitochondrial structures during seed germination and early seedling development in Arabidopsis thaliana. Biologia 70, 1019–1025 (2015). https://doi.org/10.1515/biolog-2015-0130

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2015-0130

Key words

Navigation