Skip to main content

Advertisement

Log in

Agrobacterium-mediated transformation of chitinase gene from the actinorhizal tree Casuarina equisetifolia in Nicotiana tabacum

  • Published:
Biologia Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Genetic transformation of plants offers the possibility of testing hypotheses on the function of individual genes and enables exploration of transgenes for targeted trait improvement. Cloning of the full-length class I chitinase from the Casuarina equisetifolia (CeChi1) was earlier reported by our team. In the present study, tobacco was used as a model system to functionally evaluate the potential of CeChi1 driven by ubiquitin promoter. The pUH-CeChi1 construct was introduced into tobacco by Agrobacterium-mediated transformation and the putative transformants were confirmed for stable gene integration, transgene expression and recombinant protein production using PCR, RT-qPCR, antifungal assays and in planta analysis. The in vitro antifungal bioassay using the total proteins from leaves of transformed plantlets revealed the characteristic lysis of hyphal tips of pathogenic fungi including Trichosporium vesiculosum, Fusarium oxysporum and Rhizoctonia solani. The in planta bioassay of transformed tobacco showed reduced disease symptoms when compared to untransformed wild plants. The study revealed that the class I chitinase isolated from C. equisetifolia can act as a potential gene resource in future transformation programs for incorporating disease tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BAP:

benzylaminopurine

hph :

hygromycin phosphotransferase

IBA:

indole butyric acid

MS:

Murashige and Skoog

NAA:

naphthalene acetic acid

PMSF:

phenylmethyl sulfonyl fluoride

PR:

pathogenesis-related

RT-qPCR:

quantitative real-time PCR

References

  • Ahmed N.U., Park J.I., Seo M.S., Kumar T.S., Lee I.H., Park B.S. & Nou I.S. 2012. Identification and expression analysis of chitinase genes related to biotic stress resistance in Brassica. Mol. Biol. Rep. 39. 3649–3657.

    Article  CAS  PubMed  Google Scholar 

  • Assem S.K. & Hassan O.S. 2008. Real time quantitative PCR analysis of transgenic maize plants produced by Agrobacterium-mediated transformation and particle bombardment. J. Appl. Sci. Res. 4. 408–414.

    CAS  Google Scholar 

  • Awade A., de Tapia M., Didierjean I. & Burkard G. 1989. Biological function of bean pathogenesis-related (PR3 and PR4) proteins. Plant Sci. 63. 121–130.

    Article  CAS  Google Scholar 

  • Broglie K., Chet I., Holliday M., Cressman R., Biddle P., Knowlton S., Mauvais C.J. & Broglie R. 1991. Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254: 1194–1197.

    Article  CAS  PubMed  Google Scholar 

  • Carstens M., Vivier M.A. & Pretorius I.S. 2003. The Saccharomyces cerevisiae chitinase encoded by the CTS1-2 gene confers antifungal activity against Botrytis cinerea to transgenic tobacco. Transgenic Res. 12. 497–508.

    Article  CAS  PubMed  Google Scholar 

  • Chai B., Maqbool S.B., Hajela R.K., Green D., Vargas Jr J.M., Warkentin D., Sabzikar R. & Sticklen M.B. 2002. Cloning of a chitinase-like cDNA (hs2), its transfer to creeping bentgrass (Agrostis palustris Huds.) and development of brown patch (Rhizoctonia solani) disease resistant transgenic lines. Plant Sci. 163. 183–193.

    Article  CAS  Google Scholar 

  • Chang M.M., Horovitz D., Culley D. & Hadwiger L.A. 1995. Molecular cloning and characterization of a pea chitinase gene expressed in response to wounding fungal infection and the elicitor chitosan. Plant Mol. Biol. 28. 105–111.

    Article  CAS  PubMed  Google Scholar 

  • Chaudhry Z. & Rashid H. 2010. An improved Agrobacterium mediated transformation in tomato using hygromycin as a selective agent. Afr. J. Biotechnol. 9. 1882–1891.

    Article  CAS  Google Scholar 

  • Cho H.T. & Cosgrove D.J. 2000. Altered expression of expansin modulates leaf growth and pedicel abscission in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 97: 9783–9788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Condori J., Medrano G., Sivakumar G., Nair V., Cramer C. & Medina-Bolivar F. 2009. Functional characterization of a stil-bene synthase gene using a transient expression system in planta. Plant Cell Rep. 4. 589–599.

    Article  CAS  Google Scholar 

  • Dana M.M., Pintor-Toro J.A. & Cubero B. 2006. Transgenic tobacco plants over-expressing chitinases of fungal origin show enhanced resistance to biotic and abiotic stress agents. Plant Physiol. 142. 722–730.

    Article  PubMed Central  CAS  Google Scholar 

  • Ee S.F., Khairunnisa M.B., Zeti-Azura M.H., Noor Azmi S. & Zamri Z. 2014. Effective hygromycin concentration for selection of Agrobacterium-mediated transgenic Arabidopsis thaliana. Malaysian Applied Biology 43: 119–123.

    Google Scholar 

  • Emani C., Juan Garcia M., Lopata-Finch E., Pozo M.J., Uribe P., Kim D.J., Sunilkumar G., Cook D.R., Kenerley C.M. & Rathore K.S. 2003. Enhanced fungal resistance in transgenic cotton expressing an endochitinase gene from Trichoderma virens. Plant Biotechnol. J. 1. 321–336.

    Article  CAS  PubMed  Google Scholar 

  • Esaka M. & Teramoto T. 1998. cDNA cloning gene expression and secretion of chitinase in winged bean. Plant Cell Physiol. 39. 349–356.

    Article  CAS  PubMed  Google Scholar 

  • Ger M.J., Chen C.H., Hwang S.Y., Huang H.E., Podile A.R., Dayakar B.V. & Feng T.Y. 2002. Constitutive expression of Hrap gene in transgenic tobacco plant enhances resistance against virulent bacterial pathogens by induction of a hypersensitive response. Mol. Plant Microbe Interact. 157. 64–73.

    Google Scholar 

  • Grover A. 2012. Plant chitinases: genetic diversity and physiological roles. Crit. Rev. Plant Sci. 31. 57–73.

    Article  CAS  Google Scholar 

  • Hamid R., Khan M.A., Ahmad M., Ahmad M.M., Abdin M.Z., Musarrat J. & Javed S. 2013. Chitinases: an update. J. Pharm. Bioallied Sci. 5. 21–29.

    PubMed  PubMed Central  Google Scholar 

  • Himmelbach A., Zierold U., Hensel G., Riechen J., Douchkov D., Schweizer P. & KumLehn J. 2007. A set of modular binary vectors for transformation of cereals. Plant Physiol. 145. 1192–1200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong J.K. & Hwang B.K. 2006. Promoter activation of pepper class II basic chitinase gene CAChi2 and enhanced bacterial disease resistance and osmotic stress tolerance in the CAChi2-overexpressing Arabidopsis. Planta 223: 433–448.

    Article  CAS  PubMed  Google Scholar 

  • Horsch R.B., Fraley R.T., Rogers S.G., Sanders P.R. & Lloyd A. 1985. A simple and general method for transferring genes into plants. Science 227: 1229–1231.

    Article  CAS  Google Scholar 

  • Ismail I., Hassan M.A., Abdul Rahman N. & Chen S.S. 2010. Thermophilic biohydrogen production from palm oil mill effluent (POME) using suspended mixed culture. Biomass Bioenergy 34: 42–47.

    Article  CAS  Google Scholar 

  • Jach G., Görnhardt B., Mundy J., Logemann J., Pinsdorf E., Leah R., Schell J. & Maas C. 1995. Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. Plant J. 8. 97–109.

    Article  CAS  PubMed  Google Scholar 

  • Jiang C., Huang R.F., Song J.L., Huang M.R. & Xu L.A. 2013. Genome-wide analysis of the chitinase gene family in Populus trichocarpa. J. Genet. 92. 121–125.

    Article  PubMed  Google Scholar 

  • Jube S. & Borthakur D. 2007. Expression of bacterial genes in transgenic tobacco: methods applications and future prospects. Electron. J. Biotechnol. 10. 452–467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katiyar-Agarwal S., Kapoor A. & Grover A. 2002. Binary cloning vectors for efficient genetic transformation of rice plants. Curr. Sci. 82. 873–877.

    CAS  Google Scholar 

  • Kelemu S., Changshun J., Guixi H. & Segura G. 2005. Genetic transformation of the tropical forage legume Stylosanthes guianensis with a rice-chitinase gene confers resistance to Rhizoctonia foliar blight disease. Afr. J. Biotechnol. 4. 1025–1033.

    CAS  Google Scholar 

  • Kirubakaran S.I. & Sakthivel N. 2007. Cloning and overexpres-sion of antifungal barley chitinase gene in Escherichia coli. Protein Expr. Purif. 52. 159–166.

    Article  CAS  PubMed  Google Scholar 

  • Kovács G., Sági L., Jacon G., Arinaitwe G., Busogoro J.P., Thiry E., Strosse H., Swennen R. & Remy S. 2013. Expression of a rice chitinase gene in transgenic banana (‘Gros Michel’, AAA genome group) confers resistance to black leaf streak disease. Transgenic Res. 22. 117–130.

    Article  PubMed  CAS  Google Scholar 

  • Leah R., Tommerup H., Svendsen I. & Mundy J. 1991. Biochemical and molecular characterization of three barley seed proteins with antifungal properties. J. Biol. Chem. 226. 1564–1573.

    Google Scholar 

  • Livak K.J. & Schmittgen T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2ΔΔ C(T) method. Methods 25: 402–408.

    Article  CAS  PubMed  Google Scholar 

  • Logemann J., Jach G., Tommerup H. & Mundy J. 1992. Expression of a barley ribosome-inactivating protein leads to increased fungal protection in transgenic tobacco plants BioTechnology 10: 305–308.

    CAS  Google Scholar 

  • M’hamdi M., Chikh-Rouhou H., Boughalleb N. & Ruiz de Galarreta J. I. 2012. Enhanced resistance to Rhizoctonia solani by combined expression of chitinase and ribosome inactivating protein in transgenic potatoes (Solanum tuberosum L.). Spanish Journal of Agricultural Research 10: 778–785.

    Article  Google Scholar 

  • Maximova S.N., Marelli J.P., Young A., Pishak S., Verica J.A. & Guiltinan M.J. 2006. Over-expression of a cacao class I chitinase gene in Theobroma cacao L. enhances resistance against the pathogen, Colletotrichum gloeosporioides. Planta 224: 740–749.

    Article  CAS  PubMed  Google Scholar 

  • Metraux J.P., Burkhart W., Moyer M., Dincher S., Middlesteadt W., Williams S., Payne G., Carnes M. & Ryals J. 1989. Isolation of a complementary DNA encoding a chitinase with structural homology to a bifunctional lysozyme/chitinase. Proc. Natl. Acad. Sci. USA 86: 896–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mincoff P.C., Garcia Cortez D.A., Ueda-Nakamura T., Nakamura C.V. & Dias Filho B.P. 2006. Isolation and characterization of a 30 kD antifungal protein from seeds of Sorghum bicolor. Res. Microbiol. 157. 326–332.

    Article  CAS  PubMed  Google Scholar 

  • Neuhaus J.M. 1999. Plant chitinases (PR-3, PR-4, PR-8, PR-11), pp 77–105. In: Datta S.K. & Muthukrishnan S. (eds), Pathogenesis-Related Proteins in Plants. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Öktem H.A., Özkan F., Özalp V.C. & Yücel M. 1994. Agrobac-terium mediated gene transfer in tobacco. Turkish Journal of Botany 18: 397–405.

    Google Scholar 

  • Rathmell W.G. & Sequeira L. 1974. Soluble peroxidase in fluid from the intercellular spaces of tobacco leaves. Plant Physiol. 53. 317–318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renner T. & Specht C.D. 2012. Molecular and functional evolution of class I chitinases for plant carnivory in the Caryophyllales. Mol. Biol. Evol. 10. 2971–2985.

    Article  CAS  Google Scholar 

  • Richards E.J. 1997. Preparation of plant DNA using CTAB, pp. 10–11. In: Ausubel F., Brent R., Kingston R.E., Moore D.D., Seidman J.G., Smith J.A. & Struhl K. (eds), Short Protocols in Molecular Biology. John Wiley, New York.

    Google Scholar 

  • Rivarola M., McClellan C.A., Resnick J.S. & Chang C. 2009. ETR1-specific mutations distinguish ETR1 from other Arabidopsis ethylene receptors as revealed by genetic interaction with RTE1. Plant Physiol. 150. 547–551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robert N., Roche K., Lebeau Y., Breda C., Boulay M., Esnault R. & Buffard D. 2002. Expression of grapevine chitinase genes in berries and leaves infected by fungal or bacterial pathogens. Plant Sci. 162. 389–400.

    Article  CAS  Google Scholar 

  • Saiprasad G.V.S., Mythili J.B., Anand L., Suneetha C., Rashmi H.J., Naveena C. & Ganeshan G. 2009. Development of Trichoderma harzianum gene construct conferring antifungal activity in transgenic tobacco. Indian J. Biotechnol. 8. 199–206.

    CAS  Google Scholar 

  • Samac D.A., Hironake C.M., Yallaly P.E. & Shah D.M. 1990. Isolation and characterization of the genes encoding basic and acidic chitinase in Arabidopsis thaliana. Plant Physiol. 93

    Google Scholar 

  • Schlumbaum A., Mauch F., Vogeli U. & Boller T. 1986. Plant chitinases are potent inhibitors of fungal growth. Nature 324: 365–367.

    Article  CAS  Google Scholar 

  • Schmidt G.W. & Delaney S.K. 2010. Stable internal reference genes for normalization of real-time RT-PCR in tobacco (Nicotiana tabacum) during development and abiotic stress. Mol. Genet. Genomics 283: 233–241.

    Article  CAS  PubMed  Google Scholar 

  • Schmittgen T.D., Zakrajsek B.A., Mills A.G., Gorn V., Singer M.J. & Reed M.W. 2000. Quantitative reverse transcription-polymerase chain reaction to study mRNA decay: comparison of endpoint and real-time methods. Anal. Biochem. 285. 194–204.

    Article  CAS  PubMed  Google Scholar 

  • Sela-Buurlage M. B., Ponstein A. S., Bres-Vloemans S. A., Melchers L. S., Van Den Elzen P.J.M. & Cornelissen B.J.C. 1993. Only specific tobacco (Nicotiana tabacum) chitinases and β-1,3-glucanases exhibit antifungal activity. Plant Physiol. 101. 857–863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma N., Sharma K.P., Gaur R.K. & Gupta V.K. 2011. Role of chitinase in plant defense. Asian Journal of Biochemistry 6: 29–37.

    Article  CAS  Google Scholar 

  • Sridevi G., Sabapathi N., Meena P., Nandakumar R., Samiyappan R., Muthukrishnan S. & Veluthambi K. 2003. Transgenic indica rice variety pusa basmati 1 constitutively expressing a rice chitinase gene exhibits enhanced resistance to Rhizoctonia solani. J. Plant Biochem. Biotechnol. 12. 93–101.

    Article  CAS  Google Scholar 

  • Su Y., Xu L., Wang S., Wang Z., Yang Y., Chen Y. & Que Y. 2015. Identification, phylogeny, and transcript of chitinase family genes in Sugarcane. Sci. Rep. 5. 10708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swathi A.T., Divya K., Jami S.K. & Kirti P.B. 2008. Transgenic tobacco and peanut plants expressing a mustard de-fensin show resistance to fungal pathogens. Plant Cell Rep. 27. 1777–1786.

    Article  CAS  Google Scholar 

  • Tohidfar M., Rassouli H., Haghnazari A., Ghareyazie B. & Najafi J. 2009. Evaluation of stability of chitinase gene in transgenic offspring of cotton (Gossypium hirsutum). Iranian Journal of Biotechnology 7: 45–50.

    CAS  Google Scholar 

  • Tuncer T. 2006. Transformation of tobacco (Nicotiana tabaccum) with antimicrobial pflp gene and analysis of transgenic plants. Thesis submitted to the Graduate School of Natural and Applied Sciences of Middle East Technical University.

    Google Scholar 

  • Veluthakkal R. & Dasgupta M.G. 2012. Isolation and characterization of pathogen defence-related class I chitinase from the actinorhizal tree Casuarina equisetifolia. Forest Pathol. 42. 467–480.

    Article  Google Scholar 

  • Veluthakkal R., Karpaga Raja Sundari B. & Ghosh Dasgupta M. 2012. Tree chitinases -stress-and developmental-driven gene regulation. Forest Pathol. 42. 271–278.

    Article  Google Scholar 

  • Wang S.S., Su Y.C., Yang Y.T., Guo J.L. & Xu L.P. 2014. Molecular cloning and expression analysis of chitinase gene Sc-ChiVII1 in sugarcane. Chinese Journal of Tropical Crops 35: 289–298.

    Google Scholar 

  • Xiao Y.H., Li X.B., Yang X.Y., Luo M., Hou L., Guo S.H., Luo X.Y. & Pei Y. 2007. Cloning and characterization of a balsam pear class I chitinase gene (Mcchil1) and its ectopic expression enhances fungal resistance in transgenic plants. Biosci. Biotechnol. Biochem. 71. 1211–1219.

    Article  CAS  PubMed  Google Scholar 

  • Xu F., Fan C. & He Y. 2007. Chitinases in Oryza sativa ssp. japonica and Arabidopsis thaliana. J. Genet. Genomics 34: 138–150.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto T., Iketani H., Ieki H., Nishizawa Y., Notsuka K., Hibi T., Hayashi T. & Matsuta N. 2000. Transgenic grapevine plants expressing a rice chitinase with enhanced resistance to fungal pathogens. Plant Cell Rep. 19. 639–646.

    Article  CAS  PubMed  Google Scholar 

  • Yeboah N.A., Arahira M., Nong V.H., Zhang D., Kadokura K., Watanabe A. & Fukazawa C. 1998. A class III acidic endo-chitinase is specifically expressed in the developing seeds of soybean (Glycine max [L.] Merr.). Plant Mol. Biol. 36. 407–415.

    Article  CAS  PubMed  Google Scholar 

  • Yuan L., Wang L., Han Z., Jiang Y., Zhao L., Liu H., Yang L. & Luo K. 2012. Molecular cloning and characterization of PtrLAR3 a gene encoding leucoanthocyanidin reductase from Populus trichocarpa and its constitutive expression enhances fungal resistance in transgenic plants. J. Exp. Bot. 63. 2513–2524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W., Chu Y., Ding C., Zhang B., Huang Q., Hu Z., Huang R., Tian Y. & Su X. 2014. Transcriptome sequencing of transgenic poplar (Populus × euramericana ‘Guariento’) expressing multiple resistance genes. BMC Genetics 15 (Suppl. 1): S7.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Dr. R. Viswanathan, Principal Scientist and Head (Plant Protection), Sugarcane Breeding Institute, Coimbatore, India, for providing facilities to conduct RT-qPCR and Dr. V.Mohan, Scientist, Division of Forest Protection, Institute of Forest Genetics and Tree Breeding, Coimbatore, India, for providing the fungal strains. The authors are grateful to Dr. K. Ulaganathan, Professor, Centre for Plant Molecular Biology, Osmania University, Hyderabad, Andhra Pradesh, India, for providing the seeds of Nicotiana tabacum. The authors also thank Dr. D. Sudhakar, Professor, Centre for Plant Molecular Biology, Tamil Nadu Agricultural University, Coimbatore, India, for providing pUH vector for transformation studies. The authors acknowledge Dr. V. Sivakumar, Institute of Forest Genetics and Tree Breeding, Coimbatore, India, for conducting the digital analysis of fungal hyphae. Finally, the authors thank the Department of Biotechnology, Ministry of Science and Technology, Government of India, for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Modhumita Ghosh Dasgupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veluthakkal, R., Dasgupta, M.G. Agrobacterium-mediated transformation of chitinase gene from the actinorhizal tree Casuarina equisetifolia in Nicotiana tabacum. Biologia 70, 905–914 (2015). https://doi.org/10.1515/biolog-2015-0114

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2015-0114

Key words

Navigation