Abstract
Genetic transformation of plants offers the possibility of testing hypotheses on the function of individual genes and enables exploration of transgenes for targeted trait improvement. Cloning of the full-length class I chitinase from the Casuarina equisetifolia (CeChi1) was earlier reported by our team. In the present study, tobacco was used as a model system to functionally evaluate the potential of CeChi1 driven by ubiquitin promoter. The pUH-CeChi1 construct was introduced into tobacco by Agrobacterium-mediated transformation and the putative transformants were confirmed for stable gene integration, transgene expression and recombinant protein production using PCR, RT-qPCR, antifungal assays and in planta analysis. The in vitro antifungal bioassay using the total proteins from leaves of transformed plantlets revealed the characteristic lysis of hyphal tips of pathogenic fungi including Trichosporium vesiculosum, Fusarium oxysporum and Rhizoctonia solani. The in planta bioassay of transformed tobacco showed reduced disease symptoms when compared to untransformed wild plants. The study revealed that the class I chitinase isolated from C. equisetifolia can act as a potential gene resource in future transformation programs for incorporating disease tolerance.
Similar content being viewed by others
Abbreviations
- BAP:
-
benzylaminopurine
- hph :
-
hygromycin phosphotransferase
- IBA:
-
indole butyric acid
- MS:
-
Murashige and Skoog
- NAA:
-
naphthalene acetic acid
- PMSF:
-
phenylmethyl sulfonyl fluoride
- PR:
-
pathogenesis-related
- RT-qPCR:
-
quantitative real-time PCR
References
Ahmed N.U., Park J.I., Seo M.S., Kumar T.S., Lee I.H., Park B.S. & Nou I.S. 2012. Identification and expression analysis of chitinase genes related to biotic stress resistance in Brassica. Mol. Biol. Rep. 39. 3649–3657.
Assem S.K. & Hassan O.S. 2008. Real time quantitative PCR analysis of transgenic maize plants produced by Agrobacterium-mediated transformation and particle bombardment. J. Appl. Sci. Res. 4. 408–414.
Awade A., de Tapia M., Didierjean I. & Burkard G. 1989. Biological function of bean pathogenesis-related (PR3 and PR4) proteins. Plant Sci. 63. 121–130.
Broglie K., Chet I., Holliday M., Cressman R., Biddle P., Knowlton S., Mauvais C.J. & Broglie R. 1991. Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254: 1194–1197.
Carstens M., Vivier M.A. & Pretorius I.S. 2003. The Saccharomyces cerevisiae chitinase encoded by the CTS1-2 gene confers antifungal activity against Botrytis cinerea to transgenic tobacco. Transgenic Res. 12. 497–508.
Chai B., Maqbool S.B., Hajela R.K., Green D., Vargas Jr J.M., Warkentin D., Sabzikar R. & Sticklen M.B. 2002. Cloning of a chitinase-like cDNA (hs2), its transfer to creeping bentgrass (Agrostis palustris Huds.) and development of brown patch (Rhizoctonia solani) disease resistant transgenic lines. Plant Sci. 163. 183–193.
Chang M.M., Horovitz D., Culley D. & Hadwiger L.A. 1995. Molecular cloning and characterization of a pea chitinase gene expressed in response to wounding fungal infection and the elicitor chitosan. Plant Mol. Biol. 28. 105–111.
Chaudhry Z. & Rashid H. 2010. An improved Agrobacterium mediated transformation in tomato using hygromycin as a selective agent. Afr. J. Biotechnol. 9. 1882–1891.
Cho H.T. & Cosgrove D.J. 2000. Altered expression of expansin modulates leaf growth and pedicel abscission in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 97: 9783–9788.
Condori J., Medrano G., Sivakumar G., Nair V., Cramer C. & Medina-Bolivar F. 2009. Functional characterization of a stil-bene synthase gene using a transient expression system in planta. Plant Cell Rep. 4. 589–599.
Dana M.M., Pintor-Toro J.A. & Cubero B. 2006. Transgenic tobacco plants over-expressing chitinases of fungal origin show enhanced resistance to biotic and abiotic stress agents. Plant Physiol. 142. 722–730.
Ee S.F., Khairunnisa M.B., Zeti-Azura M.H., Noor Azmi S. & Zamri Z. 2014. Effective hygromycin concentration for selection of Agrobacterium-mediated transgenic Arabidopsis thaliana. Malaysian Applied Biology 43: 119–123.
Emani C., Juan Garcia M., Lopata-Finch E., Pozo M.J., Uribe P., Kim D.J., Sunilkumar G., Cook D.R., Kenerley C.M. & Rathore K.S. 2003. Enhanced fungal resistance in transgenic cotton expressing an endochitinase gene from Trichoderma virens. Plant Biotechnol. J. 1. 321–336.
Esaka M. & Teramoto T. 1998. cDNA cloning gene expression and secretion of chitinase in winged bean. Plant Cell Physiol. 39. 349–356.
Ger M.J., Chen C.H., Hwang S.Y., Huang H.E., Podile A.R., Dayakar B.V. & Feng T.Y. 2002. Constitutive expression of Hrap gene in transgenic tobacco plant enhances resistance against virulent bacterial pathogens by induction of a hypersensitive response. Mol. Plant Microbe Interact. 157. 64–73.
Grover A. 2012. Plant chitinases: genetic diversity and physiological roles. Crit. Rev. Plant Sci. 31. 57–73.
Hamid R., Khan M.A., Ahmad M., Ahmad M.M., Abdin M.Z., Musarrat J. & Javed S. 2013. Chitinases: an update. J. Pharm. Bioallied Sci. 5. 21–29.
Himmelbach A., Zierold U., Hensel G., Riechen J., Douchkov D., Schweizer P. & KumLehn J. 2007. A set of modular binary vectors for transformation of cereals. Plant Physiol. 145. 1192–1200.
Hong J.K. & Hwang B.K. 2006. Promoter activation of pepper class II basic chitinase gene CAChi2 and enhanced bacterial disease resistance and osmotic stress tolerance in the CAChi2-overexpressing Arabidopsis. Planta 223: 433–448.
Horsch R.B., Fraley R.T., Rogers S.G., Sanders P.R. & Lloyd A. 1985. A simple and general method for transferring genes into plants. Science 227: 1229–1231.
Ismail I., Hassan M.A., Abdul Rahman N. & Chen S.S. 2010. Thermophilic biohydrogen production from palm oil mill effluent (POME) using suspended mixed culture. Biomass Bioenergy 34: 42–47.
Jach G., Görnhardt B., Mundy J., Logemann J., Pinsdorf E., Leah R., Schell J. & Maas C. 1995. Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. Plant J. 8. 97–109.
Jiang C., Huang R.F., Song J.L., Huang M.R. & Xu L.A. 2013. Genome-wide analysis of the chitinase gene family in Populus trichocarpa. J. Genet. 92. 121–125.
Jube S. & Borthakur D. 2007. Expression of bacterial genes in transgenic tobacco: methods applications and future prospects. Electron. J. Biotechnol. 10. 452–467.
Katiyar-Agarwal S., Kapoor A. & Grover A. 2002. Binary cloning vectors for efficient genetic transformation of rice plants. Curr. Sci. 82. 873–877.
Kelemu S., Changshun J., Guixi H. & Segura G. 2005. Genetic transformation of the tropical forage legume Stylosanthes guianensis with a rice-chitinase gene confers resistance to Rhizoctonia foliar blight disease. Afr. J. Biotechnol. 4. 1025–1033.
Kirubakaran S.I. & Sakthivel N. 2007. Cloning and overexpres-sion of antifungal barley chitinase gene in Escherichia coli. Protein Expr. Purif. 52. 159–166.
Kovács G., Sági L., Jacon G., Arinaitwe G., Busogoro J.P., Thiry E., Strosse H., Swennen R. & Remy S. 2013. Expression of a rice chitinase gene in transgenic banana (‘Gros Michel’, AAA genome group) confers resistance to black leaf streak disease. Transgenic Res. 22. 117–130.
Leah R., Tommerup H., Svendsen I. & Mundy J. 1991. Biochemical and molecular characterization of three barley seed proteins with antifungal properties. J. Biol. Chem. 226. 1564–1573.
Livak K.J. & Schmittgen T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2ΔΔ C(T) method. Methods 25: 402–408.
Logemann J., Jach G., Tommerup H. & Mundy J. 1992. Expression of a barley ribosome-inactivating protein leads to increased fungal protection in transgenic tobacco plants BioTechnology 10: 305–308.
M’hamdi M., Chikh-Rouhou H., Boughalleb N. & Ruiz de Galarreta J. I. 2012. Enhanced resistance to Rhizoctonia solani by combined expression of chitinase and ribosome inactivating protein in transgenic potatoes (Solanum tuberosum L.). Spanish Journal of Agricultural Research 10: 778–785.
Maximova S.N., Marelli J.P., Young A., Pishak S., Verica J.A. & Guiltinan M.J. 2006. Over-expression of a cacao class I chitinase gene in Theobroma cacao L. enhances resistance against the pathogen, Colletotrichum gloeosporioides. Planta 224: 740–749.
Metraux J.P., Burkhart W., Moyer M., Dincher S., Middlesteadt W., Williams S., Payne G., Carnes M. & Ryals J. 1989. Isolation of a complementary DNA encoding a chitinase with structural homology to a bifunctional lysozyme/chitinase. Proc. Natl. Acad. Sci. USA 86: 896–900.
Mincoff P.C., Garcia Cortez D.A., Ueda-Nakamura T., Nakamura C.V. & Dias Filho B.P. 2006. Isolation and characterization of a 30 kD antifungal protein from seeds of Sorghum bicolor. Res. Microbiol. 157. 326–332.
Neuhaus J.M. 1999. Plant chitinases (PR-3, PR-4, PR-8, PR-11), pp 77–105. In: Datta S.K. & Muthukrishnan S. (eds), Pathogenesis-Related Proteins in Plants. CRC Press, Boca Raton, FL.
Öktem H.A., Özkan F., Özalp V.C. & Yücel M. 1994. Agrobac-terium mediated gene transfer in tobacco. Turkish Journal of Botany 18: 397–405.
Rathmell W.G. & Sequeira L. 1974. Soluble peroxidase in fluid from the intercellular spaces of tobacco leaves. Plant Physiol. 53. 317–318.
Renner T. & Specht C.D. 2012. Molecular and functional evolution of class I chitinases for plant carnivory in the Caryophyllales. Mol. Biol. Evol. 10. 2971–2985.
Richards E.J. 1997. Preparation of plant DNA using CTAB, pp. 10–11. In: Ausubel F., Brent R., Kingston R.E., Moore D.D., Seidman J.G., Smith J.A. & Struhl K. (eds), Short Protocols in Molecular Biology. John Wiley, New York.
Rivarola M., McClellan C.A., Resnick J.S. & Chang C. 2009. ETR1-specific mutations distinguish ETR1 from other Arabidopsis ethylene receptors as revealed by genetic interaction with RTE1. Plant Physiol. 150. 547–551.
Robert N., Roche K., Lebeau Y., Breda C., Boulay M., Esnault R. & Buffard D. 2002. Expression of grapevine chitinase genes in berries and leaves infected by fungal or bacterial pathogens. Plant Sci. 162. 389–400.
Saiprasad G.V.S., Mythili J.B., Anand L., Suneetha C., Rashmi H.J., Naveena C. & Ganeshan G. 2009. Development of Trichoderma harzianum gene construct conferring antifungal activity in transgenic tobacco. Indian J. Biotechnol. 8. 199–206.
Samac D.A., Hironake C.M., Yallaly P.E. & Shah D.M. 1990. Isolation and characterization of the genes encoding basic and acidic chitinase in Arabidopsis thaliana. Plant Physiol. 93
Schlumbaum A., Mauch F., Vogeli U. & Boller T. 1986. Plant chitinases are potent inhibitors of fungal growth. Nature 324: 365–367.
Schmidt G.W. & Delaney S.K. 2010. Stable internal reference genes for normalization of real-time RT-PCR in tobacco (Nicotiana tabacum) during development and abiotic stress. Mol. Genet. Genomics 283: 233–241.
Schmittgen T.D., Zakrajsek B.A., Mills A.G., Gorn V., Singer M.J. & Reed M.W. 2000. Quantitative reverse transcription-polymerase chain reaction to study mRNA decay: comparison of endpoint and real-time methods. Anal. Biochem. 285. 194–204.
Sela-Buurlage M. B., Ponstein A. S., Bres-Vloemans S. A., Melchers L. S., Van Den Elzen P.J.M. & Cornelissen B.J.C. 1993. Only specific tobacco (Nicotiana tabacum) chitinases and β-1,3-glucanases exhibit antifungal activity. Plant Physiol. 101. 857–863.
Sharma N., Sharma K.P., Gaur R.K. & Gupta V.K. 2011. Role of chitinase in plant defense. Asian Journal of Biochemistry 6: 29–37.
Sridevi G., Sabapathi N., Meena P., Nandakumar R., Samiyappan R., Muthukrishnan S. & Veluthambi K. 2003. Transgenic indica rice variety pusa basmati 1 constitutively expressing a rice chitinase gene exhibits enhanced resistance to Rhizoctonia solani. J. Plant Biochem. Biotechnol. 12. 93–101.
Su Y., Xu L., Wang S., Wang Z., Yang Y., Chen Y. & Que Y. 2015. Identification, phylogeny, and transcript of chitinase family genes in Sugarcane. Sci. Rep. 5. 10708.
Swathi A.T., Divya K., Jami S.K. & Kirti P.B. 2008. Transgenic tobacco and peanut plants expressing a mustard de-fensin show resistance to fungal pathogens. Plant Cell Rep. 27. 1777–1786.
Tohidfar M., Rassouli H., Haghnazari A., Ghareyazie B. & Najafi J. 2009. Evaluation of stability of chitinase gene in transgenic offspring of cotton (Gossypium hirsutum). Iranian Journal of Biotechnology 7: 45–50.
Tuncer T. 2006. Transformation of tobacco (Nicotiana tabaccum) with antimicrobial pflp gene and analysis of transgenic plants. Thesis submitted to the Graduate School of Natural and Applied Sciences of Middle East Technical University.
Veluthakkal R. & Dasgupta M.G. 2012. Isolation and characterization of pathogen defence-related class I chitinase from the actinorhizal tree Casuarina equisetifolia. Forest Pathol. 42. 467–480.
Veluthakkal R., Karpaga Raja Sundari B. & Ghosh Dasgupta M. 2012. Tree chitinases -stress-and developmental-driven gene regulation. Forest Pathol. 42. 271–278.
Wang S.S., Su Y.C., Yang Y.T., Guo J.L. & Xu L.P. 2014. Molecular cloning and expression analysis of chitinase gene Sc-ChiVII1 in sugarcane. Chinese Journal of Tropical Crops 35: 289–298.
Xiao Y.H., Li X.B., Yang X.Y., Luo M., Hou L., Guo S.H., Luo X.Y. & Pei Y. 2007. Cloning and characterization of a balsam pear class I chitinase gene (Mcchil1) and its ectopic expression enhances fungal resistance in transgenic plants. Biosci. Biotechnol. Biochem. 71. 1211–1219.
Xu F., Fan C. & He Y. 2007. Chitinases in Oryza sativa ssp. japonica and Arabidopsis thaliana. J. Genet. Genomics 34: 138–150.
Yamamoto T., Iketani H., Ieki H., Nishizawa Y., Notsuka K., Hibi T., Hayashi T. & Matsuta N. 2000. Transgenic grapevine plants expressing a rice chitinase with enhanced resistance to fungal pathogens. Plant Cell Rep. 19. 639–646.
Yeboah N.A., Arahira M., Nong V.H., Zhang D., Kadokura K., Watanabe A. & Fukazawa C. 1998. A class III acidic endo-chitinase is specifically expressed in the developing seeds of soybean (Glycine max [L.] Merr.). Plant Mol. Biol. 36. 407–415.
Yuan L., Wang L., Han Z., Jiang Y., Zhao L., Liu H., Yang L. & Luo K. 2012. Molecular cloning and characterization of PtrLAR3 a gene encoding leucoanthocyanidin reductase from Populus trichocarpa and its constitutive expression enhances fungal resistance in transgenic plants. J. Exp. Bot. 63. 2513–2524.
Zhang W., Chu Y., Ding C., Zhang B., Huang Q., Hu Z., Huang R., Tian Y. & Su X. 2014. Transcriptome sequencing of transgenic poplar (Populus × euramericana ‘Guariento’) expressing multiple resistance genes. BMC Genetics 15 (Suppl. 1): S7.
Acknowledgements
The authors acknowledge Dr. R. Viswanathan, Principal Scientist and Head (Plant Protection), Sugarcane Breeding Institute, Coimbatore, India, for providing facilities to conduct RT-qPCR and Dr. V.Mohan, Scientist, Division of Forest Protection, Institute of Forest Genetics and Tree Breeding, Coimbatore, India, for providing the fungal strains. The authors are grateful to Dr. K. Ulaganathan, Professor, Centre for Plant Molecular Biology, Osmania University, Hyderabad, Andhra Pradesh, India, for providing the seeds of Nicotiana tabacum. The authors also thank Dr. D. Sudhakar, Professor, Centre for Plant Molecular Biology, Tamil Nadu Agricultural University, Coimbatore, India, for providing pUH vector for transformation studies. The authors acknowledge Dr. V. Sivakumar, Institute of Forest Genetics and Tree Breeding, Coimbatore, India, for conducting the digital analysis of fungal hyphae. Finally, the authors thank the Department of Biotechnology, Ministry of Science and Technology, Government of India, for the financial support.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Veluthakkal, R., Dasgupta, M.G. Agrobacterium-mediated transformation of chitinase gene from the actinorhizal tree Casuarina equisetifolia in Nicotiana tabacum. Biologia 70, 905–914 (2015). https://doi.org/10.1515/biolog-2015-0114
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1515/biolog-2015-0114