Skip to main content
Log in

Biodiversity and screening of halophilic bacteria with hydrolytic and antimicrobial activities from Yuncheng Salt Lake, China

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

A total of 152 halophilic bacteria were isolated from Yuncheng Salt Lake, China. Phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that thirty-four strains were related to the phylum Firmicutes and belonged to three families, Bacillaceae, Clostridiaceae and Staphylococcaceae. The other strains were identified as the members of Halomonadaceae and Idiomarinaceae, which belonged to the phylum γ-Proteobacteria. Nine strains showed <97% similarity of 16S rRNA gene sequence compared to other published species, which might represent novel species. The halophilic isolates exhibited various hydrolytic activities. A total of 74, 15, 70, 18, 23 and 3 strains were found to produce extracellular amylase, protease, lipase, cellulase, pectinase and DNAase, respectively. Most hydrolase-producers were members of the genus Halomonas. Combined hydrolytic activities were shown by some strains. Screening of antimicrobial activity indicated that 3, 6, 15, 12, 15 and 16 of halophilic isolates could inhibit Staphylococcus aureus, Escherichia coli, Candida albicans, Fusarium moniliforme, Fusarium semitectum and Fusarium oxysporum, respectively. Results from the present study indicated that halophilic bacteria may be developed as promising sources for novel biocatalysts or bioactive substances in the field of biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CM:

complex medium

References

  • Baati H., Amdouni R., Gharsallah N., Sghir A. & Ammar E. 2010. Isolation and characterization of moderately halophilic bacteria from Tunisian solar saltern. Curr. Microbiol. 60: 157–161.

    Article  CAS  Google Scholar 

  • Benson D.A., Cavanaugh M., Clark K., Karsch-Mizrachi I., Lipman D.J., Ostell J. & Sayers E.W. 2013. GenBank. Nucleic Acids Res. 41: D36–D42.

    Article  CAS  Google Scholar 

  • Chen L., Wang G.Y., Bu T., Zhang Y.B., Wang Y.X., Liu M. & Lin X.K. 2010. Phylogenetic analysis and screening of antimicrobial and cytotoxic activities of moderately halophilic bacteria isolated from the Weihai Solar Saltern (China). World. J. Microbiol. Biotechnol. 26: 879–888.

    Article  Google Scholar 

  • Chun J., Lee J.H., Jung Y., Kim M., Kim S., Kim B.K. & Lim Y.W. 2007. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57: 2259–2261.

    Article  CAS  Google Scholar 

  • DasSarma S. & DasSarma P. 2006. Halophiles, Encyclopedia of Life Sciences. Wiley, London.

    Google Scholar 

  • Gao X.B., Wang Y.X., Li Y.L. & Guo Q.H. 2007. Enrichment of fluoride in groundwater under the impact of saline water intrusion at the salt lake area of Yuncheng basin, northern China. Environ. Geol. 53: 795–803.

    Article  CAS  Google Scholar 

  • Ghozlan H., Deif H., Kandil R.A. & Sabry S. 2006. Biodiversity of moderately halophilic bacteria in hypersaline habitats in Egypt. J. Gen. Appl. Microbiol. 52: 63–72.

    Article  CAS  Google Scholar 

  • Han J., Hou J., Liu H., Cai S., Feng B., Zhou J. & Xiang H. 2010. Wide distribution among halophilic archaea of a novel polyhydroxyalkanoate synthase subtype with homology to bacterial type III synthases. Appl. Environ. Microbiol. 76: 7811–7819.

    Article  CAS  Google Scholar 

  • Kumar S., Nei M., Dudley J. & Tamura K. 2008. MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief. Bioinform. 9: 299–306.

    Article  CAS  Google Scholar 

  • Lee J.H., Shin H.H., Lee D.S., Kwon K.K., Kim S.J. & Lee H.K. 1999. Bacterial diversity of culturable isolates from seawater and a marine coral, Plexauridae sp., near Mun-Sum, Cheju-Island. J. Microbiol. 37: 193–199.

    Google Scholar 

  • Li X. & Yu H.Y. 2011. Extracellular production of β-amylase by a halophilic isolate, Halobacillus sp. LY9. J. Ind. Microbiol. Biotechnol. 38: 1837–1843.

    Article  CAS  Google Scholar 

  • Li X., Yu H.Y., Liu X.X. & Sun X. 2011. Production and characterization of a novel extracellular metalloproteinase by a newly isolated moderate halophile, Halobacillus sp. LY6. Folia. Microbiol. 56: 329–334.

    Article  Google Scholar 

  • Litchfield C.D. & Gillevet P.M. 2002. Microbial diversity and complexity in hypersaline environments: a preliminary assessment. J. Ind. Microbiol. Biotechnol. 28: 48–55.

    Article  CAS  Google Scholar 

  • Liu H., Zhou Y., Liu R., Zhang K.Y. & Lai R. 2009. Bacillus solisalsi sp. nov., a halotolerant, alkaliphilic bacterium isolated from soil around a salt lake. Int. J. Syst. Evol. Microbiol. 59: 1460–1464.

    Article  CAS  Google Scholar 

  • Margesin R. & Schinner F. 2001. Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5: 73–83.

    Article  CAS  Google Scholar 

  • Mellado M.E. & Ventosa A. 2003. Biotechnological potential of moderately and extremely halophilic microorganisms, pp. 233–256. In: Barredo J.L. (ed.) Microorganisms for Health Care, Food and Enzyme Production. Research Signpost, Kerala.

    Google Scholar 

  • Oren A. 2002. Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J. Ind. Microbiol. Biotechnol. 28: 56–63.

    Article  CAS  Google Scholar 

  • Roberts M.F. 2004. Osmoadaptation and osmoregulation in archaea: updat. 2004. Front. Biosci. 9: 1999–2019.

    Article  CAS  Google Scholar 

  • Rohban R., Amoozegar M.A. & Ventosa A. 2009. Screening and isolation of halophilic bacteria producing extracellular hydrolyses from Howz Soltan Lake, Iran. J. Ind. Microbiol. Biotechnol. 36: 333–340.

    Article  CAS  Google Scholar 

  • Sadfi-Zouaoui N., Essghaier B., Hajlaoui M.R., Fardeau M.L., Cayaol J.L., Ollivier B. & Boudabous A. 2008. Ability of moderately halophilic bacteria to control grey mould disease on tomato fruits. J. Phytopathol. 156: 42–52.

    CAS  Google Scholar 

  • Saitou N. & Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.

    CAS  PubMed  Google Scholar 

  • Sánchez-Porro C., Martín S., Mellado E. & Ventosa A. 2003. Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes. J. Appl. Microbiol. 94: 295–300.

    Article  Google Scholar 

  • Smibert R.M. & Krieg N.R. 1994. Phenotypic characterization, pp 607–654. In: Gerhardt P., Murray R.G.E., Wood W.A. & Krieg N.R. (eds) Methods for General and Molecular Bacteriology. American Society for Microbiology, Washington DC.

    Google Scholar 

  • Thompson J.D., Higgins D.G. & Gibson T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic. Acids Res. 22: 4673–4680.

    Article  CAS  Google Scholar 

  • Urakawa H., Kita-Tsukamoto K. & Ohwada K. 1999. Microbial diversity in marine sediments from Sagami Bay and Tokyo Bay, Japan, as determined by 16S rRNA gene analysis. Microbiology 145: 3305–3315.

    Article  CAS  Google Scholar 

  • Ventosa A. 2006. Unusual microorganisms from unusual habitats: hypersaline environments, pp 223–253. In: Logan N.A., Lappin-Scott H.M. & Oyston P.C.F. (eds) Prokaryotic Diversity–Mechanism and Significance. Cambridge University Press, Cambridge, London.

    Chapter  Google Scholar 

  • Ventosa A., Nieto J.J. & Oren A. 1998. Biology of moderately halophilic aerobic bacteria. Microbiol. Mol. Biol. Rev. 62: 504–544.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L., Tan R. & Wang Q. 2002. Antifungal cyclopeptides from Halobacillus litoralis YS3106 of marine origin. Tetrahedron Lett. 43: 6545–6548.

    Article  CAS  Google Scholar 

  • Yeon S.H., Jeong W.J. & Park J.S. 2005. The diversity of culturable organotrophic bacteria from local solar salterns. J. Microbiol. 43: 1–10.

    PubMed  Google Scholar 

  • Yoon J.H., Kim H., Kim S.B., Kim H.J., Kim W.Y., Lee S.T., Goodfellow M. & Park Y.H. 1996. Identification of Saccharomonospora strains by the use of genomic DNA fragments and rRNA gene probes. Int. J. Syst. Bacteriol. 46: 502–505.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (grant No. 31300002), Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi (2015) and PhD Start-up Foundation of Yuncheng University (grant No. YQ-2011043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Yu, Y.H. Biodiversity and screening of halophilic bacteria with hydrolytic and antimicrobial activities from Yuncheng Salt Lake, China. Biologia 70, 151–156 (2015). https://doi.org/10.1515/biolog-2015-0033

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2015-0033

Key words

Navigation