Skip to main content

Advertisement

Log in

Chitin, a key factor in immune regulation: lesson from infection with fungi and chitin bearing parasites

  • Research Note
  • Published:
Acta Parasitologica Aims and scope Submit manuscript

Abstract

The probability of infection with fungi, as well as parasitic nematodes or arthropods may increase in overcrowded population of animals and human. The widespread overuse of drugs and immunosuppressants for veterinary or medical treatment create an opportunity for many pathogenic species. The aim of the review is to present the common molecular characteristics of such pathogens as fungi and nematodes and other chitin bearing animals, which may both activate and downregulate the immune response of the host. Although these pathogens are evolutionary distinct and distant, they may provoke similar immune mechanisms. The role of chitin in these phenomena will be reviewed, highlighting the immune reactions that may be induced in mammals by this natural polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez F.J. 2014. The effect of chitin size, shape, source and purification method on immune recognition. Molecules, 19, 4433–4451. DOI: 10.3390/molecules19044433

    PubMed  PubMed Central  Google Scholar 

  • Araujo A.C., Souto-Padron T., de Souza W. 1993. Cytochemical localization of carbohydrate residues in microfilariae of Wuchereria bancrofti and Brugia malayi. Journal of Histochemistry and Cytochemistry, 41, 571–578. DOI: 10.1177/41. 4.8450196

    CAS  PubMed  Google Scholar 

  • Arnold K., Brydon L.J., Chappell L.H., Gooday G.W. 1993. Chitinolytic activities in Heligmosomoides polygyrus and their role in egg hatching. Molecular and Biochemical Parasitology, 58, 317–323. DOI: 10.1016/0166-6851(93)90054-2

    CAS  PubMed  Google Scholar 

  • Bajaj G., Van Alstine W.G., Yeo Y. 2012. Zwitterionic chitosan derivative, a new biocompatible pharmaceutical excipient, prevents endotoxin-mediated cytokine release. PLoS ONE, 7, e30899. DOI: 10.1371/journal.pone.0030899

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bass D.A., Szejda P. 1979. Mechanisms of killing of newborn larvae of Trichinella spiralis by neutrophils and eosinophils killing by generation of hydrogen peroxide in vitro. The Journal of Clinical Investigation, 64, 1558–1564. DOI: org/10.1172/JCI109616

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brodaczewska K., Doligalska M. 2012. In vivo stimulation of peritoneal cells by chitosan administered in drinking water to mice. Progress on Chemistry and Application of Chitin and its Derivatives, 17, 107–112

    CAS  Google Scholar 

  • Brodaczewska K., Doligalska M. 2013. Differential effects of low and high molecular weight chitosan administered intraperitoneally to mice infected with Heligmosomoides polygyrus. Progress on Chemistry and Application of Chitin and its Derivatives, 18, 77–84

    CAS  Google Scholar 

  • Bueter C.L., Specht C.A., Levitz S.M. 2013. Innate Sensing of Chitin and Chitosan. Plos Pathogens, 9, e1003080. DOI: 10.1371/journal.ppat.1003080

    CAS  PubMed  PubMed Central  Google Scholar 

  • Canali M.M., Porporatto C., Pilar A.M., Bianco I.D., Correa S.G. 2010. Signals elicited at the intestinal epithelium upon chitosan feeding contribute to immunomodulatory activity and biocompatibility of the polysaccharide. Vaccine, 28, 5718–5724. DOI: 10.1016/j.vaccine.2010.06.027

    CAS  PubMed  Google Scholar 

  • Cancrini G. 2006. Human infections due to nematode helminths nowadays: epidemiology and diagnostic tools. Parassitologia, 48, 53–56

    CAS  PubMed  Google Scholar 

  • Cash H.L., Whitham C.V., Behrendt C.L., Hooper L.V. 2006. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science, 313, 1126–1130. DOI: 10.1126/science.1127119

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chai L.Y.A., Netea M.G., Vonk A.G., Kullberg B-J. 2009. Fungal strategies for overcoming host innate immune response. Medical Mycology, 47, 227–236. DOI: 10.1080/13693780802209082

    CAS  PubMed  Google Scholar 

  • Chang N.C.A., Hung S.I., Hwa K.Y., Kato I., Chen J.E., Liu C.H., Chang A.C. 2001. A macrophage protein, Ym1, transiently expressed during inflammation is a novel mammalian lectin. Journal of Biological Chemistry, 276, 17497–17506. DOI: 10.1074/jbc.M010417200

    CAS  PubMed  Google Scholar 

  • Chen F., Liu Z., Wu W., Rozo C., Bowdridge S., Millman A., van Rooijen N., Urban J.F., Wynn T.A., Gause W.C. 2012. An essential role for TH2-type responses in limiting acute tissue damage during experimental helminth infection. Nature Medicine, 18, 260–266. DOI: 10.1038/nm.2628

    CAS  PubMed  PubMed Central  Google Scholar 

  • Da Silva C.A., Chalouni C., Williams A., Hartl D., Lee C.G., Elias J.A. 2009. Chitin is a size-dependent regulator of macrophage TNF and IL-10 production. Journal of Immunology, 182, 3573–3582. DOI: 10.4049/jimmunol.0802113

    Google Scholar 

  • Da Silva C.A., Hartl D., Liu W., Lee C.G., Elias J.A. 2008. TLR-2 and IL-17A in chitin-induced macrophage activation and acute inflammation. The Journal of Immunology, 181, 4279–4286. DOI: 10.4049/jimmunol.181.6.4279

    PubMed  Google Scholar 

  • Denkers E.Y., Wassom D.L., Hayes C.E. 1990. Characterization of Trichinella spiralis antigens sharing an immunodominant, carbohydrate-associated determinant distinct from phosphorylcholine. Molecular and Biochemical Parasitology, 41, 241–249. DOI: org/10.1016/0166-6851(90)90187-Q

    CAS  PubMed  Google Scholar 

  • Doligalska M., Rzepecka J., Drela N., Donskow K., Gerwel-Wronka M. 2006. The role of TGF-β in mice infected with Heligmosomoides polygyrus. Parasite Immunology, 28, 387–395. DOI: 10.1111/j.1365-3024.2006.00845.x

    CAS  PubMed  Google Scholar 

  • Everts B., Smits H.H., Hokke C.H., Yazdanbakhsh M. 2010. Helminths and dendritic cells: sensing and regulating via pattern recognition receptors, Th2 and Treg responses. European Journal of Immunology, 40, 1525–1537. DOI: 10.1002/eji.200940109

    CAS  PubMed  Google Scholar 

  • Gebreselassie N.G., Moorhead A.R., Fabre V., Gagliardo L.F., Lee N.A., Lee J.J., Appleton J.A. 2012. Eosinophils preserve parasitic nematode larvae by regulating local immunity. Journal of Immunology, 188, 417–425. DOI: 10.4049/jimmunol.1101980

    CAS  Google Scholar 

  • Geng J., Plenefisch J., Komuniecki P.R., Komuniecki R. 2002. Secretion of a novel developmentally regulated chitinase (family 19 glycosyl hydrolase) into the perivitelline fluid of the parasitic nematode, Ascaris suum. Molecular and Biochemical Parasitology, 124, 11–21. DOI: org/10.1016/S0166-6851(02)00155-X

    CAS  PubMed  Google Scholar 

  • Grigorian A., Araujo L., Naidu N.N., Place D.J., Choudhury B., Demetriou M. 2011. N-acetylglucosamine inhibits T-helper 1(Th1)/T-helper 17 (Th17) cell responses and treats experimental autoimmune encephalomyelitis. The Journal of Biological Chemistry, 286, 40133–40141. DOI: 10.1074/jbc.M111.277814

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hamann K.H., Barker R.L., Loegering D.A., Gleich G.J. 1987. Comparative toxicity of purified human eosinophil granule proteins for newborn larvae of Trichinella spiralis. Journal of Parasitology, 73, 523–529. DOI: 10.2307/3282130

    CAS  PubMed  Google Scholar 

  • Harbord M., Novelli M., Canas B., Power D., Davis C., Godovac-Zimmermann J., Roes J., Segal A.W. 2002. Ym1 Is a Neutrophil Granule Protein That Crystallizes in p47phox-deficient Mice. Journal of Biological Chemistry, 277, 5468–5475. DOI: 10.1074/jbc.M110635200

    CAS  PubMed  Google Scholar 

  • Heath-Heckman E.A.C., McFall-Ngai M.J. 2011. The occurrence of chitin in the hemocytes of invertebrates. Zoology, 114, 191–198. DOI:10.1016/j.zool.2011.02.002

    PubMed  Google Scholar 

  • Holcomb I.N., Kabakoff R.C., Chan B., Baker T.W., Gurney A., Henzel W., Nelson C., Lowman H.B., Wright B.D., Skelton N.J., Frantz G.D., Tumas D.B., Peale F.V., Jr, Shelton D.L., Hebert C.C. 2000. FIZZ1, a novel cysteine-rich secreted protein associated with pulmonary inflammation, defines a new gene family. The EMBO Journal, 19, 4046–4055. DOI: 10.1093/emboj/19.15.4046

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huber S., Hoffmann R., Muskens F., Voehringer D. 2010. Alternatively activated macrophages inhibit T-cell proliferation by Stat6-dependent expression of PD-L2. Blood, 116, 3311–3320. DOI: 10.1182/blood-2010-02-271981

    CAS  PubMed  Google Scholar 

  • Jarmila V., Vavrikova E. 2011. Chitosan derivatives with antimicrobial, antitumour and antioxidant activities-a review. Current Pharmaceutical Design, 17, 3596–3607. DOI: 10.2174/1381612 11798194468

    PubMed  Google Scholar 

  • Kaushal N.A., Simpson A.J., Hussain R., Ottesen E.A. 1984. Brugia malayi: stage-specific expression of carbohydrates containing N-acetyl-D-glucosamine on the sheathed surfaces of microfilariae. Experimental Parasitology, 58, 182–187. DOI: 10.1016/0014-4894(84)90033-X

    CAS  PubMed  Google Scholar 

  • Koller B., Muller-Wiefel A.S., Rupec R., Korting H.C., Ruzicka T. 2011. Chitin modulates innate immune responses of keratinocytes. PloS One, 6, e16594. DOI: 10.1371/journal.pone.0016594

    CAS  PubMed  PubMed Central  Google Scholar 

  • Konopka J.B. 2012. N-acetylglucosamine functions in cell signaling. Scientifica, Article ID 489208. DOI: org/10.6064/2012/489208

    Google Scholar 

  • Kreindler J.L., Steele C., Nguyen N., Chan Y.R., Pilewski J.M., Alcorn J.F., Vyas Y.M., Aujla S.J., Finelli P., Blanchard M., Zeigler S.F., Logar A., Hartigan E., Kurs-Lasky M., Rockette H., Ray A., Kolls J.K. 2010. Vitamin D3 attenuates Th2 responses to Aspergillus fumigatus mounted by CD4+ T cells from cystic fibrosis patients with allergic bronchopulmonary aspergillosis. The Journal of Clinical Investigation, 120, 3242–3254. DOI: 10.1172/JCI42388

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuroda E., Yoshida Y., En Shan B., Yamashita U. 2001. Suppression of macrophage interleukin-12 and tumour necrosis factoralpha production in mice infected with Toxocara canis. Parasite Immunology, 23, 305–311. DOI: 10.1046/j.1365-3024.2001.00387

    CAS  PubMed  Google Scholar 

  • Lee C.G., Da Silva C.A., Dela Cruz C.S., Ahangari F., Ma B., Kang M-J., He C-H., Takyar S., Elias J.A. 2011. Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury. Annual Review of Physiology, 73, 479–501. DOI: 10.1146/annurev-physiol-012110-142250

    CAS  PubMed  Google Scholar 

  • Lee C.G., Da Silva C.A., Lee J.Y., Hartl D., Elias J.A. 2008. Chitin regulation of immune responses: an old molecule with new roles. Current Opinion in Immunology, 20, 684–689. DOI: 10.1016/j.coi.2008.10.002

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q., Arseculeratne C., Liu Z., Whitmire J., Grusby M.J., Finkelman F.D., Darling T.N., Cheever A.W., Swearengen J., Urban J.F., Gause W.C. 2004. Simultaneous deficiency in CD28 and STAT6 results in chronic ectoparasite-induced inflammatory skin disease. Infection and Immunity, 72, 3706–3715. DOI: 10.1128/IAI.72.7.3706-3715.2004

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lucas A.H., Rittenhouse-Olson K., Kronenberg M., Apicella M.A., Wang D., Schreiber J.R., Taylor C.E. 2010. Carbohydrate moieties as vaccine candidates: Meeting summary. Vaccine, 28, 1121–1131. DOI: 10.1016/j.vaccine.2008.05.055

    CAS  PubMed  Google Scholar 

  • Lysek H., Malinsky J., Janisch R. 1985. Ultrastructure of eggs of Ascaris lumbricoides Linnaeus, 1758. I. Egg-Shells. Folia Parasitologica, 32, 381–384

    CAS  PubMed  Google Scholar 

  • Malinovsky F.G., Fangel J.U., Willats W.G. 2014. The role of the cell wall in plant immunity. Frontiers in Plant Science, 5, 178. DOI: 10.3389/fpls.2014.00178

    PubMed  PubMed Central  Google Scholar 

  • Marcello M.R., Singaravelu G., Singson A. 2013. Fertilization. In: (Eds. Schedl T.) Germ Cell Development in C. elegans. Advances in Experimental Medicine and Biology, 757. Springer Science+Business Media New York, 321–350. DOI: 10.1007/978-1-4614-4015-4_11

    Google Scholar 

  • Masure D., Vlaminck J., Wang T., Chiers K., Van den Broeck W., Vercruysse J., Geldhof P. 2013. A role for eosinophils in the intestinal immunity against infective Ascaris suum larvae. PLOS, Neglected Tropical Diseases, 7, e2138. DOI: 10. 1371/journal.pntd.0002138

    CAS  Google Scholar 

  • Matsuwaki Y., Wada K., Moriyama H., Kita H. 2011. Human eosinophil innate response to Alternaria Fungus through protease-activated receptor-2. International Archives of Allergy and Immunology, 155, 123–128. DOI: 10.1159/000327498

    CAS  PubMed  Google Scholar 

  • McSorley H.J., Maizels R.M. 2012. Helminth infections and host immune regulation. Clinical Microbiology Reviews, 25, 585–608. DOI: 10.1128/CMR.05040-11

    CAS  PubMed  PubMed Central  Google Scholar 

  • Merzendorfer H., Zimoch L. 2003. Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. The Journal of Experimental Biology, 206, 4393–4412. DOI: 10.1242/jeb.00709

    CAS  PubMed  Google Scholar 

  • Mitreva M., Jasmer D.P., Zarlenga D.S., Wang Z., Abubucker S., Martin J., Taylor C.M., Yin Y., Fulton L., Minx P., Yang S.P., Warren W.C., Fulton R.S., Bhonagiri V., Zhang X., Hallsworth-Pepin K., Clifton S.W., McCarter J.P. Wilson R.K. 2011. The draft genome of the parasitic nematode Trichinella spiralis. Nature Genetics, 43, 228–235. DOI: 10.1038/ng.769

    CAS  PubMed  PubMed Central  Google Scholar 

  • Montovani A., Sica A., Locati M. 2007. New vistas on macrophage differentiation and activation. European Journal of Immunology, 37, 14–16. DOI: 10.1002/eji.200636910

    Google Scholar 

  • Mora-Montes H.M., Netea M.G., Ferwerda G., Lenardon M.D., Brown G.D., Mistry A.R., Kullberg B.J., O’Callaghan C.A., Sheth C.C., Odds F.C, Brown A.J.P., Munro C.A., Gow, N.A. 2011. Recognition and blocking of innate immunity cells by Candida albicans chitin. Infection and Immunity, 79, 1961–1970. DOI: 10.1128/IAI.01282-10

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nair M.G., Gallagher I.J., Taylor M.D., Loke P.N., Coulson P.S., Wilson R.A., Maizels R.M., Allen J.E. 2005. Chitinase and Fizz family members are a generalized feature of nematode infection with selective upregulation of Ym1 and Fizz1 by antigen-presenting cells. Infection and Immunity, 73, 385–394. DOI: 10.1128/IAI.73.1.385-394.2005

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neuhaus B., Bresciani J., Christensen C.M., Sommer C. 1997. Morphological variation of the corona radiata in Oesophagostomum dentatum, O-quadrispinulatum, and O-radiatum (Nematoda: Strongyloidea). Journal of the Helminthological Society of Washington, 64, 128–136

    Google Scholar 

  • Ngo D.-N. 2012. Antioxidant, antimicrobial properties of chitin, chitosan and their derivatives. In: (Eds. Kim S.-K.) Chitin and Chitosan derivatives. Advanced in Drug Discovery and Developments. CRC Press Taylor and Francis Group, 201–212. DOI: 10.1201/b15636-14

    Google Scholar 

  • O’Dea E.M., Amarsaikhan N., Li H., Downey J., Steele E., Van Dyken S.J., Locksley R.M., Templeton S.P. 2014. Eosinophils are Recruited in Response to Chitin Exposure and Enhance Th2-Mediated Immune Pathology in Aspergillus fumigatus infection. Infection and Immunity, 82, 3199–3205. DOI: 10.1128/IAI.01990-14

    PubMed  PubMed Central  Google Scholar 

  • Overdijk B., Van Steijn G.J., Odds F.C. 1996. Chitinase levels in guinea pig blood are increased after systemic infection with Aspergillus fumigatus. Glycobiology, 6, 627–634. DOI: 10.1093/glycob/6.6.627

    CAS  PubMed  Google Scholar 

  • Paliwal R., Paliwal S.R., Agrawal G.P., Vyas S.P. 2012. Chitosan nanoconstructs forimproved oral delivery of low molecular weight heparin: in vitro and in vivo evaluation. International Journal of Pharmacy, 422, 179–184. DOI: 10.1016/j.ijpharm. 2011.10.048

    CAS  Google Scholar 

  • Pilarczyk B., Doligalska M.J., Donskow-Schmelter K., Balicka-Ramisz A., Ramisz A. 2008. Selenium supplementation enhances the protective response to Toxocara canis larvae in mice. Parasite Immunology, 30, 394–402. DOI: 10.1111/j.1365-3024.2008.01039.x

    CAS  PubMed  Google Scholar 

  • Pillai C.K.S., Paul W., Sharma C.P. 2009. Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Progress in Polymer Science, 34, 641–678. DOI: org/10.1016/j.progpolymsci.2009.04.001

    CAS  Google Scholar 

  • Pinelli E., Aranzamendi C. 2012. Toxocara infection and its association with allergic manifestations. Endocrine Metabolic & Immune Disorders Drug Targets, 12, 33–44. DOI: 10.2174/187153012799278956

    CAS  Google Scholar 

  • Poltorak A., He X., Smirnova I., Liu M.Y., Van Huffel C., Du X., Birdwell D., Alejos E., Silva M., Galanos C., Freudenberg M., Ricciardi-Castagnoli P., Layton B., Beutler B. 1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science, 282, 2085–2088. DOI: 10.1126/science.282.5396.2085

    CAS  PubMed  Google Scholar 

  • Porporatto C., Bianco I.D., Cabanillas A.M., Correa S.G. 2004. Early events associated to the oral co-administration of type II collagen and chitosan: induction of anti-inflammatory cytokines. International Immunology, 16, 433–441. DOI: 10.1093/intimm/dxh051

    CAS  PubMed  Google Scholar 

  • Porporatto C., Bianco I.D., Correa S.G. 2005. Local and systemic activity of the polysaccharide chitosan at lymphoid tissues after oral administration. Journal of Leukocyte Biology, 78, 62–69. DOI: 10.1189/jlb.0904541

    CAS  PubMed  Google Scholar 

  • Porporatto C., Canali M.M., Bianco I.D., Correa S.G. 2009a. Ability of the polysaccharide chitosan to inhibit proliferation of CD4+ lymphocytes from mucosal inductive sites, in vitro and in vivo. Cell Proliferation, 42, 780–787. DOI: 10.1111/j.1365-2184.2009.00634.x

    CAS  PubMed  Google Scholar 

  • Porporatto C., Canali M.M., Bianco I.D., Correa S.G. 2009b. The biocompatible polysaccharide chitosan enhances the oral tolerance to type II collagen. Clinical and Experimental Immunology, 155, 79–87. DOI: 10.1111/j.1365-2249.2008.03777.x

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reese T.A., Liang H.E., Tager A.M., Luster A.D., Van Rooijen N., Voehringer D., Locksley R.M. 2007. Chitin induces accumulation in tissue of innate immune cells associated with allergy. Nature, 447, 92–96. DOI: 10.1038/nature05746

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson M.D. 2005. Changing patterns and trends in systemic fungal infections. Journal of Antimicrobial Chemotherapy, 56, i5–i11. DOI: 10.1093/jac/dki218

    CAS  PubMed  Google Scholar 

  • Romani L. 2004. Immunity to fungal infections. Nature Reviews Immunology, 4, 11–24. DOI: 10.1038/nri1255

    CAS  Google Scholar 

  • Roy R.M., Wuthrich M., Klein B.S. 2012. Chitin elicits CCL2 from airway epithelial cells and induces CCR2-dependent innate allergic inflammation in the lung. The Journal of Immunology, 189, 2545–2552. DOI: 10.4049/jimmunol.1200689

    CAS  PubMed  Google Scholar 

  • Satoh T., Takeuchi O., Vandenbon A., Yasuda K., Tanaka Y., Kumagai Y., Miyake T., Matsushita K., Okazaki T., Saitoh T., Honma K., Matsuyama T., Yui K., Tsujimura T., Standley D.M., Nakanishi K., Nakai K, Akira, S. 2010. The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nature Immunology, 11, 936–944. DOI: 10.3410/j.6283956.6364054

    CAS  PubMed  Google Scholar 

  • Schlosser A., Thomsen T., Moeller J.B., Nielsen O., Tornoe I., Mollenhauer J., Moestrup S.K, Holmskov U. 2009. Characterization of FIBCD1 as an acetyl group-binding receptor that binds chitin. The Journal of Immunology, 183, 3800–3809. DOI: 10.4049/jimmunol.0901526

    CAS  PubMed  Google Scholar 

  • Shamri R., Xenakis J.J., Spencer L.A. 2011. Eosinophils in innate immunity: an evolving story. Cell and Tissue Research, 343, 57–83. DOI: 10.1007/s00441-010-1049-6

    PubMed  Google Scholar 

  • Shibata Y., Honda I., Justice J.P., Van Scott MR., Nakamura R.M., Myrvik Q.N. 2001. Th1 adjuvant N-acetyl-D-glucosamine polymer up-regulates Th1 immunity but down-regulates Th2 immunity against a mycobacterial protein (MPB-59) in interleukin-10-knockout and wild-type mice. Infection and Immunity, 69, 6123–6130. DOI: 10.1128/IAI.69.10.6123-6130.2001

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shibata Y., Metzger W.J., Myrvik Q.N. 1997. Chitin particle-induced cell-mediated immunity is inhibited by soluble mannan: mannose receptor-mediated phagocytosis initiates IL-12 production. The Journal of Immunology, 159, 2462–2467

    CAS  PubMed  Google Scholar 

  • Suginta W., Robertson P.A., Austin B., Fry S.C., Fothergill-Gillmore L.A. 2000. Chitinases from vibrio: Activity screening and purification of chiA from Vibrio carchariae. Journal of Applied Microbiology, 89, 76–84. DOI: 10.1046/j.1365-2672. 2000.01076.x

    CAS  PubMed  Google Scholar 

  • Sukhithasri V., Nisha N., Biswas L., Kumar, V.A., Biswas R. 2013. Innate immune recognition of microbial cell wall components and microbial strategies to evade such recognitions. Microbiological Research, 168, 396–406. DOI: 10.16/j.micres.2013.02.005

    CAS  PubMed  Google Scholar 

  • Sullivan B.A., Nagarajan N.A., Wingender G., Wang J., Scott I., Tsuji M., Franck R.W., Porcelli S.A., Zajonc D.M., Kronenberg M. 2010. Mechanisms for glycolipid antigen-driven cytokine polarization by Va14i NKT cells. The Journal of Immunology, 184, 141–153. DOI: 10.4049/jimmunol.0902880

    CAS  PubMed  Google Scholar 

  • Tachu B., Pillai S., Lucius R., Pogonka T. 2008. Essential Role of Chitinase in the Development of the Filarial Nematode Acanthocheilonema viteae. Infection and Immunity, 76, 221–228. DOI: 10.1128/IAI.00701-07

    CAS  PubMed  Google Scholar 

  • Tharanathan R.N., Kittur F.S. 2003. Chitin: the undisputed biomolecule of great potential. Critical Reviews in Food Science and Nutrition, 43, 61–87. DOI: 10.1080/10408690390826455

    CAS  PubMed  Google Scholar 

  • Van Dyken S.J., Mohapatra A., Nussbaum J.C., Molofsky A.B., Thornton E.E., Ziegler S.F., McKenzie A.N.J., Krummel M.F., Liang H-E., Locksley R.M. 2014. Chitin activates parallel immune modules that direct distinct inflammatory responses via innate lymphoid Type 2 and gd T cells. Immunity, 40, 414–424. DOI: 10.1016/j.immuni.2014.02.003

    PubMed  PubMed Central  Google Scholar 

  • Vega K., Kalkum M. 2012. Chitin, Chitinase responses and invasive fungal infections. International Journal of Microbiology, Article ID 920459. DOI: org/10.1155/2012/920459

    Google Scholar 

  • Venturiello S.M., Verzoletti M.L., Costantino S.N., Forastiero M.A., Roux M.E. 2007. Early pulmonary response in rats infected with Trichinella spiralis. Parasitology, 134, 281–288. DOI: http://dx.doi.org/10.1017/S0031182006001454

    CAS  PubMed  Google Scholar 

  • Veronico P., Gray L.J., Jones J.T., Bazzicalupo P., Arbucci S., Cortese M.R., Di Vito M., De Giorgi C. 2001. Nematode chitin synthases: gene structure, expression and function in Caenorhabditis elegans and the plant parasitic nematode Meloidogyne artiellia. Molecular Genetics and Genomics, 266, 28–34. DOI: 10.1007/s004380100513

    CAS  PubMed  Google Scholar 

  • Wagener J., Malireddi R.S., Lenardon M.D., Koberle M., Vautier S., MacCallum D.M., Biedermann T., Schaller M., Netea M. G., Kanneganti T.D., Brown G.D., Brown A.J.P., Gow N.A. 2014. Fungal Chitin Dampens Inflammation through IL-10 Induction Mediated by NOD2 and TLR9 Activation. PLoS Pathogens, 10, e1004050. DOI: 10.1371/journal.ppat.1004050

    PubMed  PubMed Central  Google Scholar 

  • Wagner C.J., Huber S., Wirth S., Voehringer D. 2010. Chitin induces upregulation of B7-H1 on macrophages and inhibits T-cell proliferation. European Journal of Immunology, 40, 2882–2890. DOI: 10.1002/eji.201040422

    CAS  PubMed  Google Scholar 

  • Walton S.F., Pizzutto S., Slender A., Viberg L., Holt D., Hales B.J., Kemp D.J., Currie B.J., Rolland J.M., O’Hehir R. 2010. Increased allergic immune response to Sarcoptes scabiei antigens in crusted versus ordinary scabies. Clinical and Vaccine Immunology, 17, 1428–1438. DOI: 10.1128/CVI.00195-10

    CAS  PubMed  Google Scholar 

  • Wharton D.A. 1980. Nematode egg-shells. Parasitology, 81, 447–463. DOI: org/10.1017/S003118200005616X

    CAS  PubMed  Google Scholar 

  • Yasuda K., Matsumoto M., Nakanishi K. 2014. Importance of both innate immunity and acquired immunity for rapid expulsion of S. venezuelensis. Frontiers in Immunology, 5, 118. DOI: 10.3389/fimmu.2014.00118

    PubMed  PubMed Central  Google Scholar 

  • Yoon J., Ponikau J.U., Lawrence C.B., Kita H. 2008. Innate antifungal immunity of human eosinophils mediated by a integrin, CD11b. The Journal of Immunology, 181, 2907–2915. DOI: 10.4049/jimmunol.181.4.2907

    CAS  PubMed  Google Scholar 

  • Zhang Y., Foster J.M., Nelson L.S., Ma D., Carlow C.K. 2005. The chitin synthase genes chs-1 and chs-2 are essential for C. elegans development and responsible for chitin deposition in the eggshell and pharynx, respectively. Developmental Biology, 285, 330–339. DOI: org/10.1016/j.ydbio.2005.06.037

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Doligalska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brodaczewska, K., Donskow-Łysoniewska, K. & Doligalska, M. Chitin, a key factor in immune regulation: lesson from infection with fungi and chitin bearing parasites. Acta Parasit. 60, 337–344 (2015). https://doi.org/10.1515/ap-2015-0047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/ap-2015-0047

Keywords

Navigation