Acta Geophysica

, Volume 64, Issue 5, pp 1525–1541 | Cite as

Spectral Decomposition Using the CEEMD Method: a Case Study from the Carpathian Foredeep

  • Anna KwietniakEmail author
  • Kamil Cichostępski
  • Monika Kasperska
Open Access


The purpose of this work is to select the optimal spectral decomposition (SD) method for channel detection in the Miocene strata of the Carpathian Fordeep, SE Poland. For analysis, two spectral decomposition algorithms were tested on 3D seismic data: the first, based on Fast Fourier Transform (FFT), and second, on Complete Ensemble Empirical Mode Decomposition (CEEMD). Additionally the results of instantaneous frequency (IF) were compared with the results of peak frequency (PF) computed after the CEEMD. Both algorithms of SD enabled us to interpret channels, but the results are marginally different, i.e. the FFT shows more coarse, linear structures, that are desirable for channel interpretation, whereas the CEEMD does not highlight these structures as clearly and shows more, what the authors believe to be, noise.

Key words

spectral decomposition empirical mode decomposition frequency analysis channels 


  1. Castagna, J.P. (2006), Comparison of spectral decomposition methods, First Break 24, 3, 75–79.Google Scholar
  2. Chopra, S., and K.J. Marfurt (2007), Seismic attributes for prospect identification and reservoir characterization, SEG Geophysical Developments, Series No. 11, Tulsa, 138–141.CrossRefGoogle Scholar
  3. Damuth, J.E., R.O. Kowsmann, R.D. Flood, R.H. Belderson, and M.A. Gorini (1983), Age relationships of distributary channels on Amazon deep-sea fan: Implications for fan growth pattern, Geology 11, 8, 470–473, DOI: 10.1130/0091-7613(1983)11<470:ARODCO>2.0.CO;2.CrossRefGoogle Scholar
  4. Han, J., and M. van der Baan (2013), Empirical mode decomposition for seismic time-frequency analysis, Geophysics 78, 2, O9–O19, DOI: 10.1190/GEO2012-0199.1.CrossRefGoogle Scholar
  5. Huang, N.E., and Z. Wu (2008), A review on Hilbert-Huang transform: method and its applications to geophysical studies, Rev. Geophys. 46, 2, RG2006, DOI: 10.1029/2007RG000228.Google Scholar
  6. Karnkowski, P.H., and W. Ozimkowski (2001), Structural evolution of the pre-miocene basement in the Carpathian Foredeep (Kraków–Przemyśl region, SE Poland). Prz. Geol. 49, 431–436 (in Polish).Google Scholar
  7. Kotlarczyk, J. (1985), An outline of the stratigraphy of marginal tectonic units of the Carpathian Orogene in the Rzeszów-Przemyśl area. In: J. Kotlarczyk (ed.), Geotraverse Kraków-Baranów-Rzeszów- Przemyśl-Komańcza-Dukla, XII Congress of Carpathian-Balkan Geological Association, Cracow, Poland, Guide to excursion 4: 21–32 (in Polish).Google Scholar
  8. Krawiec, D., K. Dzwinel, and S.J. Porębski (2008), Reconstruction of channel systems in lower Sarmatian deposits in SE part of the Carpathian Foreland Basin based on 3D seismic datasets, Międzynarodowa Konferencja Naukowo-Techniczna Geopetrol 2008, Prace Instytutu Nafty i Gazu 150, 279–284 (in Polish).Google Scholar
  9. Li, Y., and X. Zheng (2008), Spectral decomposition using Wigner-Ville distribution with applications to carbonate reservoir characterization, The Leading Edge 27, 8, 1050–1057, DOI: 10.1190/1.2967559.CrossRefGoogle Scholar
  10. Masters, T. (1995), Neural, Novel and Hybrid Algorithms for Time Series Prediction, John Wiley & Sons, Inc. New York.Google Scholar
  11. Oszczypko, N. (1996), The miocene dynamics of the Carpathian Foredeep in Poland, Prz. Geol. 44, 1007–1018 (in Polish).Google Scholar
  12. Oszczypko-Clowes, M., D. Lelek, and N. Oszczypko (2012), Sarmatian paleoecological environment of the Machów Formation based on the quantitative nannofossil analysis–a case study from the Sokołów area (Polish Carpathian Foredeep). Geol. Carpath. 63, 267–294.Google Scholar
  13. Partyka, G., J. Gridley, and J. Lopez (1999), Interpretational applications of spectral decomposition in reservoir characterization, The Leading Edge 18, 3, 353–360, DOI: 10.1190/1.1438295.CrossRefGoogle Scholar
  14. Porębski, S.J., J. Jarzyna, K. Pietsch, M. Bała, Dec, T. Danek, H. Sechman, P. Marzec, P. Puskarczyk, M. Warchoł, T. Zorski, K. Cichostępski, Kasperska, A. Kwietniak, P. Guzy, and G. Izydor (2014), Criteria for recognition of gas-bearing heterolithic reservoirs in the Miocene Strata of the Forecarpathian Basin based on integrated interpretation of cores, well logs and seismic images, Research program AGH, NCN no. N N525 254040, Polish National Science Centre (unpublished report; in Polish).Google Scholar
  15. Taner, M.T., F. Koehler, and R.E. Sheriff (1979), Complex seismic trace analysis, Geophysics 44, 6, 1041–1063, DOI: 10.1190/1.1440994.CrossRefGoogle Scholar

Copyright information

© A. Kwietniak et al. 2016

Authors and Affiliations

  • Anna Kwietniak
    • 1
    Email author
  • Kamil Cichostępski
    • 1
  • Monika Kasperska
    • 1
  1. 1.Faculty of Geology, Geophysics and Environmental ProtectionAGH University of Science and TechnologyKrakówPoland

Personalised recommendations