Acta Geophysica

, Volume 64, Issue 6, pp 2677–2716 | Cite as

Early Thermal History of Rhea: The Role of Serpentinization and Liquid State Convection

  • Leszek Czechowski
  • Anna Łosiak
Open Access


Early thermal history of Rhea is investigated. The role of the following parameters of the model is investigated: time of beginning of accretion, tini, duration of accretion, tac, viscosity of ice close to the melting point, η0, activation energy in the formula for viscosity, E, thermal conductivity of silicate component, ksil, ammonia content, XNH3, and energy of serpentinization, cserp. We found that tini and tac are crucial for evolution. All other parameters are also important, but no dramatic differences are found for realistic values. The process of differentiation is also investigated. It is found that liquid state convection could delay the differentiation for hundreds of My. The results are confronted with observational data from Cassini spacecraft. It is possible that differentiation is fully completed but the density of formed core is close to the mean density. If this interpretation is correct, then Rhea could have accreted any time before 3–4 My after formation of CAI.

Key words

medium-sized satellites thermal evolution gravitational differentiation serpentinization Rhea 


  1. Abramov, O., and S.J. Mojzsis (2011), Abodes for life in carbonaceous asteroids?, Icarus 213, 1, 273–279, DOI: 10.1016/j.icarus.2011.03.003.CrossRefGoogle Scholar
  2. Anderson, J.D., and G. Schubert (2007), Saturn’s satellite Rhea is a homogeneous mix of rock and ice, Geophys. Res. Lett. 34, 2, L02202, DOI: 10.1029/2006GL028100.CrossRefGoogle Scholar
  3. Barr, A.C., and R.M. Canup (2008), Constraints on gas giant satellite formation from the interior states of partially differentiated satellites, Icarus 198, 1, 163–177, DOI:. 10.1016/j.icarus.2008.07.004.CrossRefGoogle Scholar
  4. Bland, P.A., M.D. Jackson, R.F. Coker, B.A. Cohen, B. Webber, M.R. Lee, C.M. Duffy, R.J. Chater, M.G. Ardakani, D.S. McPhail, D.W. McComb, and G.K. Benedix (2009), Why aqueous alteration in asteroids was isochemical: high porosity doesn’t equal high permeability, Earth Planet. Sci. Lett. 287, 3–4, 559–568, DOI: 10.1016/j.epsl.2009.09.004.CrossRefGoogle Scholar
  5. Brearley, A.J. (2004), Nebular versus parent-body processing. In: A.M. Davis, H.D. Holland, and K.K. Turekian (eds.), Meteorites, Comets, and Planets. Treatise on Geochemistry, Elsevier-Pergamon, Oxford, 247–268.Google Scholar
  6. Brearley, A.J. (2006), The action of water. In: D.S. Lauretta, and H.Y. McSween Jr. (eds.), Meteorites and the Early Solar System II, University of Arizona Press, Tuscon, 587–624.Google Scholar
  7. Brearley, A.J., and R.H. Jones (1998), Chondritic meteorites. In: J.J. Papike (ed.), Planetary Materials, Mineralogical Society of America, Reviews in Mineralogy, Vol. 36, 3-1-3-398.Google Scholar
  8. Canup, R.M., and W.R. Ward (2009), Origin of Europa and the Galilean satellites. In: R.T. Pappalardo, W.B. McKinnon, and K. Khurana (eds.), Europa, University of Arizona Press in collaboration with Lunar and Planetary Institute, Tucson, 59–83.Google Scholar
  9. Castillo-Rogez, J. (2006), Internal structure of Rhea, J. Geophys Res. 111, E11, E11005, DOI: 10.1029/2004 JE002379.CrossRefGoogle Scholar
  10. Castillo-Rogez, J., D. Matson, C. Sotin, T. Johnson, J. Lunine, and P. Thomas (2007), Iapetus’ geophysics: Rotation rate, shape, and equatorial ridge, Icarus 190, 1, 179–202, DOI: 10.1016/j.icarus.2007.02.018.CrossRefGoogle Scholar
  11. Christensen, U. (1984), Convection with pressure and temperature-dependent non-Newtonian rheology, Geophys. J. Roy. Astr. Soc. 11, 2, 343–384, DOI: 10.1111/j.l365-246X.1984.tb01939.x.CrossRefGoogle Scholar
  12. Cogoni, M., B. D’Aguanno, L.N. Kuleshova, and D.W.M. Hofmann (2011), A powerful computational crystallography method to study ice polymorphism, J. Chem. Phys. 134, 20, 204506, DOI: 10.1063/1.3593200.CrossRefGoogle Scholar
  13. Consolmagno, G.J., and D.T. Britt (1998), The density and porosity of meteorites from the Vatican collection, Metorit. Planet. Sci. 33, 6, 1231–1241, DOI: 10.1111/j.l945-5100.1998.tb01308.x.CrossRefGoogle Scholar
  14. Coradini, A., G. Magni, and D. Turrini (2010), From gas to satellitesimals: Disk formation and evolution, Space Sci. Rev. 153, 1, 411–429, DOI: 10.1007/si 1214-009-9611-9.CrossRefGoogle Scholar
  15. Czechowski, L. (1993), Theoretical approach to mantle convection. In: R. Teisseyre, L. Czechowski, and J. Leliwa-Kopystyhski (eds.), Dynamics of The Earth’s Evolution, Elsevier, Amsterdam, 161–271.Google Scholar
  16. Czechowski, L. (2006), Parameterized model of convection driven by tidal and radiogenic heating, Adv. Space Res. 38, 4, 788–793, DOI: 10.1016/j.asr.2005. 12.013.CrossRefGoogle Scholar
  17. Czechowski, L. (2012), Thermal history and large scale differentiation of the Saturn’s satellite Rhea, Acta Geophys. 60, 4, 1192–1212, DOI: 10.2478/si 1600-012-0041-9.CrossRefGoogle Scholar
  18. Czechowski, L. (2014), Some remarks on the early evolution of Enceladus, Planet. Space Sci. B. 104, 185–199, DOI: 10.1016/j.pss.2014.09.010.CrossRefGoogle Scholar
  19. Czechowski, L., and K.J. Kossacki (2009), Thermal convection in the porous methane-soaked regolith of Titan: Investigation of stability, Icarus 202, 2, 599–606, DOI: 10.1016/j.icarus.2009.02.032.CrossRefGoogle Scholar
  20. Czechowski, L., and K.J. Kossacki (2012), Thermal convection in the porous methane-soaked regolith in Titan: finite amplitude convection, Icarus 217, 1, 130–143, DOI: 10.1016/j.icarus.2011.10.006.CrossRefGoogle Scholar
  21. Czechowski, L., and J. Leliwa-Kopystyński (2003), Tidal heating and convection in the medium size icy satellites, Celest. Mech. Dyn. Astr. 87, 1, 157–169, DOI: 10.1023/AT026136025400.CrossRefGoogle Scholar
  22. Czechowski, L., and J. Leliwa-Kopystynski (2013), Remarks on the Iapetus bulge and ridge, Earth Planet Space 65, 8, 929–934, DOI: 10.5047/eps.2012. 12.008.CrossRefGoogle Scholar
  23. Czechowski, L., and P.P. Witek (2015), Comparison of early evolutions of mimas and enceladus, Acta Geophys. 63, 3, 900–921, DOI: 10.1515/acgeo-2015-0024.CrossRefGoogle Scholar
  24. Dalton, J.B., O. Prieto-Ballesteros, J. Kargel, C.S. Jamieson, J. Joliviet, and R. Quinn (2005), Spectral comparison of highly hydrated sulfate salts to disrupted terrains on Europa, Icarus 177, 472–490.CrossRefGoogle Scholar
  25. Davaille, A., and C. Jaupart (1993), Transient high-Rayleigh-number thermal convection with large viscosity variations, J. Fluid Mech. 253, 141–166, DOI: 10.1017/S0022112093001740.CrossRefGoogle Scholar
  26. Davies, G.F. (2007), Mantle regulation of core cooling: A geodynamo without core radioactivity? Phys. Earth Planet. In. 160, 3–4, 215–229, DOI: 10.1016/j.pepi.2006.11.001.CrossRefGoogle Scholar
  27. De Pater, I., and J.J. Lissauer (2001), Planetary Sciences, Cambridge University Press, Cambridge, 528 pp.Google Scholar
  28. Desch, S.J., J.C. Cook, T.C. Doggett, and S.B. Porter (2009), Thermal evolution of Kuiper belt objects, with implications for cryovolcanism, Icarus 202, 2, 694–714, DOI: 10.1016/j.icarus.2009.03.009.CrossRefGoogle Scholar
  29. Dumoulin, C, M.P. Doin, and L. Fleitout (1999), Heat transport in stagnant lid convection with temperature- and pressure-dependent Newtonian or non-Newtonian rheology, J. Geophys. Res. 104, B6, 12759–12777, DOI: 10.1029/1999JB900110.CrossRefGoogle Scholar
  30. Durham, W.B., S.H. Kirby, and L.A. Stern (1998), Rheology of planetary ices. In: B. Schmitt, C. de Bergh, and M. Festou (eds.), Solar System Ices, Kluwer Academic Publ., Dordrecht, 63–78.CrossRefGoogle Scholar
  31. Forni, O., A. Coradini, and C. Federico (1991), Convection and lithospheric strength in dione, an icy satellite of Saturn, Icarus 94, 1, 232–245, DOI: 10.1016/0019-1035(91)90153-KCrossRefGoogle Scholar
  32. Giese, B., T. Denk, G. Neukum, T. Roatsch, P. Helfenstein, P.C. Thomas, E.P. Turtle, A. McEwen, and C.C. Porco (2008), The topography of Iapetus’ leading side, Icarus 193, 2, 359–371, DOI: 10.1016/j.icarus.2007.06.005.CrossRefGoogle Scholar
  33. Goldsby, D.L., and D.L. Kohlstedt (1997). Grain boundary sliding in fine-grained Ice-I, Scripta Mater. 37, 9, 1399–1405.CrossRefGoogle Scholar
  34. Gounelle, M., and M.E. Zolensky (2001), A terrestrial origin for sulphate veins in CI1 carbonaceous chondrites, Meteorit. Planet. Sci. 36, 10, 1321–1329, DOI: 10.1111/j.1945-5100.2001.tb01827.x.CrossRefGoogle Scholar
  35. Grasset, O., and P.M. Parmentier (1998), Thermal convection in a volumetrically heated, infinite Prandtl number fluid with strongly temperature-dependent viscosity: Implications for planetary evolution, J. Geophys. Res. 103, B8, 18171–18181, DOI: 10.1029/98JB01492.CrossRefGoogle Scholar
  36. Hobbs, P.V. (1974), Ice Physics, Oxford University Press, New York.Google Scholar
  37. Hussmann, H., G. Choblet, D.L. Matson, C. Sotin, G. Tobie, and T. van Hoolst (2010), Implications of rotation, orbital states, energy sources, and heat transport for internal processes in icy satellites, Space Sci. Rev. 153, 1–4, 317–348, DOI: 10.1007/s11214-010-9636-0.CrossRefGoogle Scholar
  38. Hutchison, R. (2004), Meteorites: A Petrologic, Chemical and Isotopic Synthesis, Cambridge University Press, Cambridge, 506 pp.Google Scholar
  39. Iess, L., N.J. Rappaport, P. Tortora, J. Lunine, J.W. Armstrong, S.W. Asmar, L. Somenzi, and F. Zingoni (2007), Gravity field and interior of Rhea from Cassini data analysis, Icarus 190, 2, 585–593, DOI: 10.1016/j.icarus.2007.03.027.CrossRefGoogle Scholar
  40. Ivers, D.J., and C.G. Phillips (2012), Anisotropic turbulent thermal diffusion and thermal convection in a rapidly rotating fluid sphere, Physics Planet. In. 190, 2–9, DOI: 10.1016/j.pepi.2011.10.006.Google Scholar
  41. Jaumann, R., R.N. Clark, F. Nimmo, A.R. Hendrix, B.J. Buratti, T. Denk, J.M. Moore, P.M. Schenk, S.J. Ostro, and R. Srama (2009), Icy satellites: Geological evolution and surface processes. In: M.K. Dougherty, L.W. Esposito, and S.M. Krimigis (eds.), Saturn from Cassini-Huygens, Springer, 637–681, DOI: 10.1007/978-1-4020-9217-6_20.CrossRefGoogle Scholar
  42. Jull, A.J.T., S. Cheng, J.L. Gooding, and M.A. Velbel (1988), Rapid growth of magnesium-carbonate weathering products in a stony meteorite from Antarctica, Science 242, 4877, 417–419, DOI: 10.1126/science.242.4877.417.CrossRefGoogle Scholar
  43. Kargel, J.S., and S. Pozio (1996), The volcanic and tectonic history of Enceladus, Icarus 119, 2, 385–404, DOI: 10.1006/icar.1996.0026.CrossRefGoogle Scholar
  44. Kargel, J.S., J.Z. Kaye, J.W. Head, G.M. Marion, and R. Sassen, J.K. Crowley, O. Prieto-Ballesteros, S.A. Grant, and D.L. Hogenboom (2000), Europa’s crust and ocean: origin, composition, and the prospects for life, Icarus 148, 1, 226–265, DOI: 10.1006/icar.2000.6471.CrossRefGoogle Scholar
  45. Kuskov, O.L., and V.A. Kronrod (2005), Internal structure of Europa and Callisto, Icarus 177, 2, 550–569, DOI: 10.1016/j.icarus.2005.04.014.CrossRefGoogle Scholar
  46. Landau, L.D., and E.M. Lifshitz (1987), Fluid Mechanics. Vol. 6, 2nd ed., Butterworth-Heinemann, 552 pp.Google Scholar
  47. Leliwa-Kopystynski, J., M. Maruyama, and T. Nakajima (2002), The water-ammonia phase diagram up to 300 MPa: Application to icy satellites, Icarus 159, 2, 518–528, DOI: 10.1006/icar.2002.6932.CrossRefGoogle Scholar
  48. Llana-Funez, S., K.H. Brodie, E.H. Rutter, and J.C. Arkwright (2007), Experimental dehydration kinetics of serpentinite using pore volumometry, J. Metamorph. Geol. 25, 4, 423–428, DOI: 10.1111/j.l525-1314.2007.00703.x.CrossRefGoogle Scholar
  49. Losiak, A., and M.A. Velbel (2011), Evaporite formation during weathering of Antarctic meteorites — A weathering census analysis based on the ANSMET database, Meteorit. Planet. Sci. 46, 3, 443–458, DOI: 10.111 l/j.1945-5100.2010.01166.x.CrossRefGoogle Scholar
  50. Macke, R.J., G.J. Consolmagno, and D.T. Britt (2011), Density, porosity, and magnetic susceptibility of carbonaceous chondrites, Meteorit. Planet. Sci. 46, 12, 1842–1862, DOI: 10.1111/j.l945-5100.2011.01298.x.CrossRefGoogle Scholar
  51. Mackenzie, R.A., L. Iess, P. Tortora, and N.J. Rappaport (2008), A non-hydrostatic Rhea, Geophys. Res. Lett. 35, 5, L05204, DOI: 10.1029/2007GL032898.CrossRefGoogle Scholar
  52. Malamud, U., and D. Prialnik (2013), Modeling serpentinization: Applied to the early evolution of Enceladus and Mimas, Icarus 225, 1, 763–774, DOI: 10.1016/j.icarus.2013.04.024.CrossRefGoogle Scholar
  53. Malvern, L.E. (1969), Introduction to the Mechanics of a Continuous Medium, Prentice-Hall Inc., Englewood Cliffs, 713 pp.Google Scholar
  54. Mangold, N., P. Allemand, P. Duval, Y. Geraud, and P. Thomas (2002), Experimental and theoretical deformation of ice-rock mixtures: Implications on rheology and ice content of Martian permafrost, Planet. Space Sci. 50, 4, 385–401, DOI: 10.1016/S0032-0633(02)00005-3.CrossRefGoogle Scholar
  55. Matson, D.L., J.C. Castillo-Rogez, G. Schubert, Ch. Sotin, and W.B. McKinnon (2009), The thermal evolution and internal structure of Saturn’s mid-sized icy satellites. In: M.K. Dougherty, L.W. Esposito, and S.M. Krimigis (eds.), Saturn from Cassini-Huygens, Springer, 577–612, DOI 10.1007/978-1-4020-9217-618.CrossRefGoogle Scholar
  56. McKinnon, W.B. (1998), Geodynamics of icy satellites. In: B. Schmitt, C. de Bergh, and M. Festou (eds.), Solar System Ices, Kluwer Academic Publ., Dordrecht, 525–550.CrossRefGoogle Scholar
  57. McKinnon, W.B., and M.E. Zolensky (2003), Sulfate content of Europa’s ocean and shell: Evolutionary considerations and some geological and astrobiological implications, Astrobiology 3, 4, 879–897, DOI: 10.1089/153110703322736150.CrossRefGoogle Scholar
  58. Merk, E., D. Breuer, and T. Spohn (2002), Numerical modeling of 26A1 induced radioactive melting of asteroids concerning accretion, Icarus 159, 1, 183–191, DOI: 10.1006/icar.2002.6872.CrossRefGoogle Scholar
  59. Mosqueira, I., P. Estrada, and D. Turrini (2010), Planetesimals and satellitesimals: Formation of the satellite systems, Space Sci. Rev. 153, 1, 431–446, DOI: 10.1007/sll214-009-9614-6.CrossRefGoogle Scholar
  60. Multhaup, K., and T. Spohn (2007), Stagnant lid convection in the mid-sized icy satellite of Saturn, Icarus 186, 2, 420–435, DOI: 10.1016/j.icarus.2006.09.001.CrossRefGoogle Scholar
  61. Opeil, C.P., G.J. Consolmagno, and D.T. Britt (2010), The thermal conductivity of meteorites: New measurements and analysis, Icarus 208, 1, 449–454, DOI: 10.1016/j.icarus.2010.01.021.CrossRefGoogle Scholar
  62. Ostro, S.J., R.D. West, M.A. Janssen, R.D. Lorenz, H.A. Zebker, G.J. Black, J.I. Lunine, L.C. Wye, R.M. Lopes-Gautier, S.D. Wall, C. Elachi, L. Roth, S. Hensley, K. Kelleher, G.A. Hamilton, Y. Gim, Y.Z. Anderson, R.A. Boehmer, W.T.K. Johnson, and the Cassini RADAR Team (2006), Cassini RADAR observations of Enceladus, Thethys, Dione, Rhea, Iapetus, Hyperion, and Phoebe, Icarus 183, 2, 479–490, DOI: 10.1016/j.icarus.2006. 02.019.CrossRefGoogle Scholar
  63. Peacock, S.M. (2001), Are the lower planes of double seismic zones caused by serpentine dehydration in subducting oceanic mantle? Geology 29, 4, 299–302, DOI: 10.1130/0091-7613(2001)029<0299:ATLPOD>2.0.CO;2.CrossRefGoogle Scholar
  64. Peltier, W.R., and G.T. Jarvis (1982), Whole mantle convection and the thermal evolution of the Earth, Phys. Earth Planet. In. 29, 3–4, 281–304, DOI: 10.1016/0031-9201(82)90018-8.CrossRefGoogle Scholar
  65. Plescia, J.B. (1985), Geology of Rhea. In: Lunar and Planetary Science Conference XVI, 665–666.Google Scholar
  66. Porco, C.C., E. Baker, J. Barbara, K. Beurle, A. Brahic, J.A. Burns, S. Charnoz, N. Cooper, D.D. Dawson, A.D. Del Genio, T. Denk, L. Dones, U. Dyudina, M.W. Evans, B. Giese, K. Grazier, P. Helfenstein, A.P. Ingersoll, R.A. Jacobson, T.V. Johnson, A. McEwen, C.D. Murray, G. Neukum, W.M. Owen, J. Perry, T. Roatsch, J. Spitale, S. Squyres, P.C. Thomas, M. Tiscareno, E. Turtle, A.R. Vasavada, J. Veverka, R. Wagner, and R. West (2005), Cassini imaging science: Initial results on Phoebe and Iapetus, Science 307, 5713, 1237–1242, DOI: 10.1126/science.1107981.CrossRefGoogle Scholar
  67. Porco, C.C., P. Helfenstein, P.C. Thomas, A.P. Ingersoll, J. Wisdom, R. West, G. Neukum, T. Denk, R. Wagner, T. Roatsch, S. Kieffer, E. Turtle, A. McEwen, T.V. Johnson, J. Rathbun, J. Veverka, D. Wilson, J. Perry, J. Spitale, A. Brahic, J.A. Burns, A.D. Delgenio, L. Dones, C.D. Murray, and S. Squyres (2006), Cassini observes the active South Pole of Enceladus, Science 311, 5766, 1393–1401, DOI: 10.1126/science.1123013.CrossRefGoogle Scholar
  68. Postberg, F., J. Schmidt, J.K. Hillier, S. Kempf, and R. Srama (2011), A salt-water reservoir as the source of a compositionally stratified plume on Enceladus, Nature 474, 7353, 620–622, DOI: 10.1038/nature10175.CrossRefGoogle Scholar
  69. Prentice, A.J.R. (2006), Saturn’s icy moon Rhea: A prediction for its bulk chemical composition and physical structure at the time of the Cassini spacecraft first flyby, Publ. Astron. Soc. Aust. 23, 1, 1–11, DOI: 10.1071/AS05041.CrossRefGoogle Scholar
  70. Prialnik, D., and R. Merk (2008), Growth and evolution of small porous icy bodies with an adaptive-grid thermal evolution code. I. Application to Kuiper Belt objects and Enceladus, Icarus 197, 1, 211–220, DOI: 10.1016/j.icarus.2008. 03.024.CrossRefGoogle Scholar
  71. Prialnik, D., A. Bar-Nun, and M. Podolak (1987), Radiogenic heating of comets by A126 and implications for their time of formation, The Astrophys. J. 319, 993–1002.CrossRefGoogle Scholar
  72. Robuchon, G., G. Choblet, G. Tobie, O. Cadek, C. Sotin, and O. Grasset (2010), Coupling of thermal evolution and despinning of early Iapetus, Icarus 207, 2, 959–971, DOI: 10.1016/j.icarus.2009.12.002.CrossRefGoogle Scholar
  73. Roscoe, R. (1952), The viscosity of suspensions of rigid spheres, Brit. J. Appl. Phys. 3, 8, 267–269.CrossRefGoogle Scholar
  74. Rothery, D.A. (1992), Satellites of the Outer Planets, Clarendon Press, Oxford.Google Scholar
  75. Rubin, A.E., J.M. Trigo-Rodnguez, H. Huber, and J.T. Wasson (2007), Progressive alteration of CM carbonaceous chondrites, Geochem. Cosmochim. Acta 71, 9, 2361–2382, DOI: 10.1016/j.gca.2007.02.008.CrossRefGoogle Scholar
  76. Rutter, E.H., S. Llana-Funez, and K.H. Brodie (2009), Dehydration and deformation of intact cylinders of serpentinite, J. Struct. Geol. 31, 1, 29–43, DOI: 10.1016/j.jsg.2008.09.008.CrossRefGoogle Scholar
  77. Schenk, P., D.P. Hamilton, R.E. Johnson, W.B. McKinnon, C. Paranicas, J. Schmidt, and M.R. Showalter (2011), Plasma, plumes and rings: Saturn system dynamics as recorded in global color patterns on its midsize icy satellites, Icarus 211, 1, 740–757, DOI: 10.1016/j.icarus.2010.08.016.CrossRefGoogle Scholar
  78. Schubert, G., T. Spohn, and R.T. Reynolds (1986), Thermal histories, compositions and internal structures of the moons of the solar system. In: J. A. Burns and M.S. Matthews (eds.), Satellites, The University of Arizona Press, Tucson, 224–292.Google Scholar
  79. Schubert, G., D.L. Turcotte, and P. Olson (eds.) (2001), Mantle Convection in the Earth and Planets, Cambridge University Press, Cambridge, 940 pp., DOI: 10.1017/CBO9780511612879.CrossRefGoogle Scholar
  80. Schubert, G., J.D. Anderson, B.J. Travis, and J. Palguta (2007), Enceladus: Present internal structure and differentiation by early and long-term radiogenic heating, Icarus 188, 2, 345–355, DOI: 10.1016/j.icarus.2006.12.012.CrossRefGoogle Scholar
  81. Schubert, G., H. Hussmann, V. Lainey, D.L. Matson, W.B. McKinnon, F. Sohl, C. Sotin, G. Tobie, D. Turrini, and T. Van Hoolst (2010), Evolution of icy satellites, Space Sci. Rev. 153, 1, 447–484, DOI: 10.1007/s11214-010-9635-1.CrossRefGoogle Scholar
  82. Sharpe, H.N., and W.R. Peltier (1978), Parameterized mantle convection and the Earth’s thermal history, Geophys. Res. Lett. 5, 9, 737–740, DOI: 10.1029/GL005i009p00737.CrossRefGoogle Scholar
  83. Showman, A.P., and R. Malhotra (1999), The Galilean satellites, Science 286, 5437, 77–84, DOI: 10.1126/science.286.5437.77.CrossRefGoogle Scholar
  84. Sinha, M., and R. Evans (2004), Mid-ocean ridges: Hydrothermal interactions between the lithosphere and oceans. In: C.R. German, J. Lin, L.M. Parson (eds.), Mid-Ocean Ridges: Hydrothermal Interactions Between the Lithosphere and Oceans, AGU Press, Washington, 19–62.Google Scholar
  85. Sohl, F., T. Spohn, D. Breuer, and K. Nagel (2002), Implications from Galileo observations on the interior structure and chemistry of the Galilean satellites, Icarus 157, 1, 104–119, DOI: 10.1006/icar.2002.6828.CrossRefGoogle Scholar
  86. Sohl, F., M. Choukroun, J. Kargel, J. Kimura, R. Pappalardo, S. Vance, and M. Zolotov (2010), Subsurface water oceans on icy satellites: Chemical composition and exchange processes, Space Sci. Rev. 153, 1–4, 485–510, DOI: 10.1007/s11214-010-9646-y.CrossRefGoogle Scholar
  87. Solomatov, V.S. (1995), Scaling of temperature-and stress-dependent viscosity convection, Phys. Fluids 7, 2, 266–274, DOI: 10.1063/1.868624.CrossRefGoogle Scholar
  88. Stein, C., S. Stein, and A. Pelayo (1995), Heat flow and hydrothermal circulation. In: S.E. Humphris, R.A. Zierenberg, L.S. Mullineaux, and R.E. Thomson (eds.), Seafloor Hydrothermal Systems, American Geophysical Union, Washington, D.C., 425–445, DOI: 10.1029/GM091p0425.Google Scholar
  89. Tomeoka, K., and P.R. Buseck (1988), Matrix mineralogy of the Orgueil CI carbonaceous chondrite, Geochim. Cosmochim. Ac. 52, 6, 1627–1640, DOI: 10.1016/0016-7037(88)90231-1.CrossRefGoogle Scholar
  90. Travis, B.J., J. Palguta, and G. Schhubert (2012), A whole-moon thermal history model of Europa: Impact of hydrothermal circulation and salt transport, Icarus 218, 2, 1006–1019, DOI: 10.1016/j.icarus.2012.02.008.CrossRefGoogle Scholar
  91. Turcotte, D.L., and G. Schubert (eds.) (2002). Geodynamics, 2nd ed., Cambridge University Press, Cambridge, 450 pp.CrossRefGoogle Scholar
  92. Vance, S., J. Harnmeijer, J. Kimura, H. Hussmann, B. DeMartin, and J.M. Brown (2007), Hydrothermal systems in small ocean planets, Astrobiology 7, 6, 987–1005, DOI: 10.1089/ast.2007.0075.CrossRefGoogle Scholar
  93. Velbel, M.A., D.T. Long, and J.L. Gooding (1991), Terrestrial weathering of Antarctic stone meteorites: Formation of Mg-carbonates on ordinary chondrites, Geochim. Cosmochim. Ac. 55, 1, 67–76, DOI: 10.1016/0016-7037 (91)90400-Y.CrossRefGoogle Scholar
  94. Velbel, M.A., E.K. Tonui, and M.E. Zolensky (2012), Replacement of olivine by serpentine in the carbonaceous chondrite Nogoya (CM2), Geochim. Cosmochim. Ac. 87, 117–135, DOI: 10.1016/j.gca.2012.03.016.CrossRefGoogle Scholar
  95. Walsh, J.B., and W.E. Brice (1984), The effect of pressure on porosity and the transport properties of rock, J. Geophys. Res. 89, NB11, 9425–9432, DOI: 10.1029/JB089iB11p09425.CrossRefGoogle Scholar
  96. Weisberg, M.K., T.J. McCoy, and A.N. Krot (2006), Systematics and evaluation of meteorite classification. In: D.S. Lauretta and H.Y. McSween Jr. (eds.), Meteorites and the Early Solar System II, University of Arizona Press, Tuscon, 19–52.Google Scholar
  97. Young, E.D., K.K. Zhang, and G. Schubert (2003), Conditions for pore water convection within carbonaceous chondrite parent bodies — implications for planetesimal size and heat production, Earth Planet. Sci. Lett. 213, 3–4, 249–259, DOI: 10.1016/S0012-821X(03)00345-5.CrossRefGoogle Scholar
  98. Zolotov, M.Y. (2007), An oceanic composition on early and today’s Enceladus, Geophys. Res. Lett. 34, 23, L23203, DOI: 10.1029/2007GL031234.CrossRefGoogle Scholar
  99. Zolotov, M.Y., and M.V. Mironenko (2007), Hydrogen chloride as a source of acid fluids in parent bodies of chondrites. In: 38th Lunar and Planetary Science Conference, Abstract #2340.Google Scholar
  100. Zolotov, M.Y., and E.L. Shock (2001), Composition and stability of salts on the surface of Europa and their oceanic origin, J. Geophys. Res. 106, E12, 32815–32827, DOI: 10.1029/2000JE001413.CrossRefGoogle Scholar

Copyright information

© Czechowski-Łosiak 2016

This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivs license,

Authors and Affiliations

  • Leszek Czechowski
    • 1
  • Anna Łosiak
    • 2
  1. 1.Institute of Geophysics Faculty of PhysicsUniversity of WarsawWarszawaPoland
  2. 2.Institute of Geological SciencesPolish Academy of Sciences in WrocławWrocławPoland

Personalised recommendations