Skip to main content

Advertisement

SpringerLink
  • Acta Geophysica
  • Journal Aims and Scope
  • Submit to this journal
Structural Investigations of Afghanistan Deduced from Remote Sensing and Potential Field Data
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Subsurface structural features of the basement complex and mineralization zone investigation in the Barramiya area, Eastern Desert of Egypt, using magnetic and gravity data analysis

07 November 2018

Ahmed Saleh, Mohamed Abdelmoneim, … Mohamed Al Deep

Subsurface structural characterization as deduced from potential field data—West Beni Suef, Western Desert, Egypt

19 October 2022

Ahmed Khalil, Tharwat H. Abdel Hafeez, … Emad Takla

Structural framework of the Wagad uplift and adjoining regions, Kutch rift basin, India, from aeromagnetic data

27 July 2019

P R Radhika, S P Anand, … P Rama Rao

Analysis of gravity and aeromagnetic data to determine structural trend and basement depth beneath the Ajdabiya Trough in northeastern Libya

27 January 2021

Abdelhakim S. Eshanibli, Abel Uyimwen Osagie, … Hussin B. Ghanush

A pilot survey for mapping the fault structure around the Geuredong volcano by using high-resolution global gravity

11 July 2022

Muhammad Yanis, Marwan, … Azman Abdul Ghani

The northernmost part of the Great Sumatran Fault map and images derived from gravity anomaly

02 April 2021

Muhammad Yanis, Faisal Abdullah, … Nazli Ismail

Quantitative analysis of self-potential anomalies in archaeological sites of Israel: an overview

03 August 2020

Lev V. Eppelbaum

Geophysical study of Ubiaja and Illushi area in northern Anambra basin, Nigeria, using combined interpretation methods of aeromagnetic data

06 April 2019

Alexius C. Okorie, Daniel N. Obiora & Emmanuel Igwe

Structural features derived from a multi-method approach and 2.75D modelling of aeromagnetic data: a case study of the Pitoa–Figuil area (Northern Cameroon)

02 December 2022

G. Voltaire Souga Kassia, T. Ndougsa Mbarga, … S. Ngoa Embeng

Download PDF
  • Open Access
  • Published: 02 December 2016

Structural Investigations of Afghanistan Deduced from Remote Sensing and Potential Field Data

  • Hakim Saibi1,2,
  • Masood Azizi1 &
  • Saad Mogren3 

Acta Geophysica volume 64, pages 978–1003 (2016)Cite this article

  • 881 Accesses

  • 13 Citations

  • 1 Altmetric

  • Metrics details

Abstract

This study integrates potential gravity and magnetic field data with remotely sensed images and geological data in an effort to understand the subsurface major geological structures in Afghanistan. Integrated analysis of Landsat SRTM data was applied for extraction of geological lineaments. The potential field data were analyzed using gradient interpretation techniques, such as analytic signal (AS), tilt derivative (TDR), horizontal gradient of the tilt derivative (HG-TDR), Euler Deconvolution (ED) and power spectrum methods, and results were correlated with known geological structures.

The analysis of remote sensing data and potential field data reveals the regional geological structural characteristics of Afghanistan. The power spectrum analysis of magnetic and gravity data suggests shallow basement rocks at around 1 to 1.5 km depth. The results of TDR of potential field data are in agreement with the location of the major regional fault structures and also the location of the basins and swells, except in the Helmand region (SW Afghanistan) where many high potential field anomalies are observed and attributed to batholiths and near-surface volcanic rocks intrusions.

A high-resolution airborne geophysical survey in the data sparse region of eastern Afghanistan is recommended in order to have a complete image of the potential field anomalies.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  • AGS (2005), Geology of Afghanistan, Afghanistan Geological Survey, available from: http://www.bgs.ac.uk/afghanminerals/geology.htm (accessed: 2015).

    Google Scholar 

  • Aitken, A.R.A., and P.G. Betts (2009), Multi-scale integrated structural and aeromagnetic analysis to guide tectonic models: An example from the eastern Musgrave Province, Central Australia, Tectonophysics 476, 3-4, 418-435, DOI: 10.1016/j.tecto.2009.07.007.

    Google Scholar 

  • Arisoy, M.O., and U. Dikmen (2013), Edge detection of magnetic sources using enhanced total horizontal derivative of the tilt angle, Bull. Earth Sci. Appl. Res. Cent. Hacet. Univ. 34, 1,.

  • Azizi, M., and H. Saibi (2015), Integrating gravity data with remotely sensed data for structural investigation of the Aynak-Logar Valley, eastern Afghanistan, and the surrounding area, IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 8, 2, 816–824, DOI: 10.1109/JSTARS.2014.2347375.

    Article  Google Scholar 

  • Azizi, M., H. Saibi, and G.R.J. Cooper (2015), Mineral and structural mapping of the Aynak-Logar Valley (eastern Afghanistan) from hyperspectral remote sensing data and aeromagnetic data, Arab. J. Geosci. 8, 12, 10911–10918, DOI: 10.1007/s12517-015-1993-2.

    Article  Google Scholar 

  • Betts, P.G., R.K. Valenta, and J. Finlay (2003), Evolution of the Mount Woods Inlier, northern Gawler Craton, Southern Australia: An integrated structural and aeromagnetic analysis, Tectonophysics 366, 1–2, 83–111, DOI: 10.1016/ S0040-1951(03)00062-3.

    Article  Google Scholar 

  • Betts, P., H. Williams, J. Stewart, and L. Ailleres (2007), Kinematic analysis of aeromagnetic data: Looking at geophysical data in a structural context, Gondwana Res. 11, 4, 582–583.

    Article  Google Scholar 

  • Blaikie, T.N., L. Ailleres, P.G. Betts, and R.A.F. Cas (2014), Interpreting subsurface volcanic structures using geologically constrained 3-D gravity inversions: Examples of maar-diatremes, Newer Volcanics Province, southeastern Australia, J. Geophys. Res. Solid Earth 119, 4, 3857–3878, DOI: 10.1002/ 2013JB010751.

    Article  Google Scholar 

  • Blakely, R.J. (1995), Potential Theory in Gravity and Magnetic Applications, Cambridge University Press, Cambridge, 441 pp.

    Book  Google Scholar 

  • Bosum, W., A. Hahn, E.G. Kind, and D. Weippert (1968), Airborne magnetometer survey in the Kingdom of Afghanistan, Geological Survey of the Federal Republic of Germany, 46 pp.

    Google Scholar 

  • Chen, S., and Y. Zhou (2005), Classifying depth-layered geological structures on Landsat TM images by gravity data, a case study of the western slope of Songliao Basin, northeast China, Int. J. Remote Sens. 26, 13, 2741–2754, DOI: 10.1080/01431160500104210.

    Article  Google Scholar 

  • Debeglia, N., and J. Corpel (1997), Automatic 3-D interpretation of potential field data using analytic signal derivatives, Geophysics 62, 1, 87–96, DOI: 10.1190/1.1444149.

    Article  Google Scholar 

  • Durga Rao, K.H.V., V. Bhanumurthy, and P.S. Roy (2009), Application of satellitebased rainfall products and SRTM DEM in hydrological modelling of Brahmaputra basin, J. Indian Soc. Remote Sens. 37, 4, 587–600, DOI: 10.1007/s12524-009-0051-5.

    Article  Google Scholar 

  • Fairhead, J.D., A. Salem, S. Williams, and E. Samson (2008), Magnetic interpretation made easy: The tilt-depth-dip-Δk method. In: 2008 SEG Ann. Int. Meeting, Expanded abstracts, Society of Exploration Geophysicists, 779–783.

    Google Scholar 

  • Finn, C.A., and B. Drenth (2007), Regional gravity and magnetic data help map subsurface geology in Afghanistan. In: GSA Denver Ann. Meeeting, Abstract # 156–9.

    Google Scholar 

  • FitzGerald, D., A. Reid, and P. McInerney (2004), New discrimination techniques for Euler deconvolution, Comput. Geosci. 30, 5, 461–469, DOI: 10.1016/ j.cageo.2004.03.006.

    Article  Google Scholar 

  • Gotze, H.J., and S. Krause (2002), The Central Andean gravity high, a relic of an old subduction complex? J. South Am. Earth Sci. 14, 8, 799–811, DOI: 10.1016/S0895-9811(01)00077-3.

    Article  Google Scholar 

  • Hinze, W.J. (1985), The Utility of Regional Gravity and Magnetic Anomaly Maps, Society of Exploration Geophysicists, 469 pp.

    Book  Google Scholar 

  • Hinze, W.J., R.R.B. von Frese, and A.H. Saad (2013), Gravity and Magnetic Exploration, Cambridge University Press, Cambridge, 525 p.

    Book  Google Scholar 

  • Hsu, S.-K., J.-C. Sibuet, and C.-T. Shyu (1996), High resolution detection of geologic boundaries from potential field anomalies: An enhanced analytic signal technique, Geophysics 61, 2, 373–386, DOI: 10.1190/1.1443966.

    Article  Google Scholar 

  • Hsu, S.-K., D. Coppens, and C.-T. Shyu (1998), Depth to magnetic source using the generalized analytic signal, Geophysics 63, 6, 1947–1957, DOI: 10.1190/ 1.1444488.

    Article  Google Scholar 

  • Jadoon, I.A.K., and A. Khurshid (1996), Gravity and tectonic model across the Sulaiman fold belt and the Chaman Fault zone in western Pakistan and eastern Afghanistan, Tectonophysics 254, 1–2, 89–109, DOI: 10.1016/0040- 1951(95)00078-X.

    Article  Google Scholar 

  • Jessell, M.W., P.O. Amponsah, L. Baratoux, D.K. Asiedu, G.K. Loh, and J. Ganne ani-Comoé region, West Africa, Precambrian Res. 212–213, 155–168, DOI: 10.1016/j.precamres.2012.04.015.

  • Jung, W., J. Brozena, and M. Peters (2013), Predicting gravity and sediment thickness in Afghanistan, Geophys. J. Int. 192, 2, 586–601, DOI: 10.1093/gji/ ggs038.

    Article  Google Scholar 

  • Kamel, A.F., and A.M. Elsirafe (1994), Delineation and analysis of the surface and subsurface structural lineament patterns in the North Lake Nasser area and its surroundings, Aswan, upper Egypt, Int. J. Remote Sens. 15, 7, 1471–1493, DOI: 10.1080/01431169408954178.

    Article  Google Scholar 

  • Keating, P., and M. Pilkington (2004), Euler deconvolution of the analytic signal and its application to magnetic interpretation, Geophys. Prospect. 52, 3, 165–182, DOI: 10.1111/j.1365-2478.2004.00408.x.

    Article  Google Scholar 

  • Khamies, A.A., and M.M. El-Tarras (2010), Surface and subsurface structures of Kalabsha area, southern Egypt, from remote sensing, aeromagnetic and gravity data, Egypt. J. Remote Sens. Space Sci. 13, 1, 43–52, DOI: 10.1016/ j.ejrs.2010.07.006.

    Google Scholar 

  • Klingele, E.E., I. Marson, and H.G. Kahle (1991), Automatic interpretation of gravity gradiometric data in two dimensions: vertical gradient, Geophys. Prospect. 39, 3, 407–434, DOI: 10.1111/j.1365-2478.1991.tb00319.x.

    Article  Google Scholar 

  • Lamontagne, M., P. Keating, and S. Perreault (2003), Seismotectonic characteristics of the lower St. Lawrence seismic zone, Quebec, insights from geology, magnetics, gravity, and seismic, Can. J. Earth Sci. 40, 2, 317–336, DOI: 10.1139/e02-104.

    Article  Google Scholar 

  • Lunden, B., G. Wang, and K. Wester (2001), A GIS based analysis of data from Landsat TM, airborne geophysical measurements, and digital maps for geological remote sensing in the Stockholm region, Sweden, Int. J. Remote Sens. 22, 4, 517–532, DOI: 10.1080/01431160050505838.

    Article  Google Scholar 

  • MacLeod, I.N., K. Jones, and T.F. Dai (1993), 3-D analytic signal in the interpretation of total magnetic field data at low magnetic latitudes, Explor. Geophys. 24, 3-4, 679–688, DOI: 10.1071/EG993679.

    Article  Google Scholar 

  • Mashayandebvu, M., P. van Driel, A.B. Reid, and J.D. Fairhead (2001), Magnetic source parameters of two-dimensional structures using extended Euler deconvolution, Geophysics 66, 3, 814–82310.1190/1.1444971.

    Article  Google Scholar 

  • Mather, P.M. (2004), Computer Processing of Remotely-sensed Images: An Introduction, 3rd ed., John Wiley & Sons, Chichester, 442 pp.

    Google Scholar 

  • McGinnis, L.D. (1971), Gravity fields and tectonics in the Hindu Kush, J. Geophys. Res. 76, 8, 1894–1904, DOI: 10.1029/JB076i008p01894.

    Article  Google Scholar 

  • McLean, M.A., C.J.L. Wilson, S.D. Boger, P.G. Beas, T.J. Rawling, and D. Damaske (2009), Basement interpretations from airborne magnetic and gravity data over the Lambert Rift region of East Antarctica, J. Geophys. Res. 114, B6, B06101, DOI: 10.1029/2008JB005650.

    Article  Google Scholar 

  • Mihalasky, M.J., J.L. Doebrich, R.W. Wahl, S.D. Ludington, G.J. Orris, J.D. Bliss, D.M. Sutphin, P.G. Schruben, K.S. Bolm, B.E. Hubbard, J.C. Mars, S.G. Peters, C.J. Wandrey, and P. Chirico (2007), Geographic information system (GIS) to accompany the non-fuel mineral resource assessment of Afghanistan. Appendix 1. In: S.G. Peters, S.D. Ludington, G.J. Orris, D.M. Sutphin, J.D. Bliss, J.J. Rytuba (eds.), Preliminary Non-fuel Mineral Resource Assessment of Afghanistan, U.S. Geological Survey–Afghanistan Ministry of Mines Joint Mineral Resource Assessment Team U.S., Geological Survey Open-File Report, 2007-1214 (Version 1), 2 CD-roms.

    Google Scholar 

  • Miller, H.G., and V. Singh (1994), Potential field tilt–a new concept for location potential field sources, Appl. Geophys. 32, 2–3, 213–217, DOI: 10.1016/ 0926-9851(94)90022-1.

    Article  Google Scholar 

  • Nabighian, M.N. (1972), The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: its properties and use for automated anomaly interpretation, Geophysics 37, 3, 507–517, DOI: 10.1190/1.1440276.

    Article  Google Scholar 

  • Nabighian, M.N. (1974), Additional comments on the analytic signal of two dimensional magnetic bodies with polygonal cross-section, Geophysics 39, 1, 85–92, DOI: 10.1190/1.1440416.

    Article  Google Scholar 

  • Nabighian, M.N. (1984), Toward a three-dimensional automatic interpretation of potential field data via generalized Hilbert transforms: Fundamental relations, Geophysics 49, 6, 780–786, DOI: 10.1190/1.1441706.

    Article  Google Scholar 

  • Rabie, S.I., and A.A. Ammar (1990), Pattern of the main tectonic trends from remote geophysics, geological structures and satellite imagery, Central Eastern Desert, Egypt, Int. J. Remote Sens. 11, 4, 669–683, DOI: 10.1080/ 01431169008955049.

    Article  Google Scholar 

  • Reid, A.B., J.M. Allsop, H. Granser, A.J. Millett, and I.W. Somerton (1990), Magnetic interpretation in three dimensions using Euler deconvolution, Geophysics 55, 1, 80–91, DOI: 10.1190/1.1442774.

    Article  Google Scholar 

  • Roest, W.R., J. Verhoef, and M. Pilkington (1992), Magnetic interpretation using 3- D analytic signal, Geophysics 57, 1, 116–125, DOI: 10.1190/1.1443174.

    Article  Google Scholar 

  • Saadi, N.M., E. Aboud, H. Saibi, and K. Watanabe (2008a), Integrating data from remote sensing, geology and gravity for geological investigation in the Tarhunah area, Northwest Libya, Int. J. Digital Earth 1, 4, 347–366, DOI: 10.1080/17538940802435844.

    Article  Google Scholar 

  • Saadi, N.M., K. Watanabe, A. Imai, and H. Saibi (2008b), Integrating potential fields with remote sensing data for geological investigations in the Eljufra area of Libya, Earth Planets Space 60, 6, 539–547, DOI: 10.1186/ BF03353116.

    Article  Google Scholar 

  • Saibi, H., E. Aboud, and S. Ehara (2012), Analysis and interpretation of gravity data from the Aluto-Langano geothermal field of Ethiopia, Acta Geophys. 60, 2, 318–336, DOI: 10.2478/s11600-011-0061-x.

    Article  Google Scholar 

  • Salem, A., S. Williams, J.D. Fairhead, D. Ravat, and R. Smith (2007), Tilt-depth method: A simple depth estimation method using first-order magnetic derivatives, The Leading Edge 26, 12, 1502–1505, DOI: 10.1190/1.2821934.

    Article  Google Scholar 

  • Salem, A., S. Williams, J.D. Faihead, R. Smith, and D. Ravat (2008), Interpretation of magnetic data using tilt-angle derivatives, Geophysics 73, 1, L1–L10, DOI: 10.1190/1.2799992.

    Article  Google Scholar 

  • Schindler, J.S. (2002), Afghanistan: Geology in a troubled land, Geotimes 47, 2, 14–15.

    Google Scholar 

  • Silverman, B.W. (1986), Density Estimation for Statistics and Data Analysis, Monographs on Statistics and Applied Probability, Vol. 26, Chapman & Hall/CRC, New York, 176 pp.

    Book  Google Scholar 

  • Spampinato, G.P.T., L. Ailleres, P.G. Betts, R.J. Armit (2015), Imaging the basement architecture across the Cork Fault in Queensland using magnetic and gravity data, Precambrian Res. 264, 63–81, DOI: 10.1016/j.precamres. 2015.04.002.

    Article  Google Scholar 

  • Spector, A., and F.E. Grant (1970), Statistical models for interpreting aeromagnetic data, Geophysics 35, 2, 293–302, DOI: 10.1190/1.1440092.

    Article  Google Scholar 

  • Spector, A., and B.K. Bhattacharyya (1966), Energy density spectrum and autocorrelation function of anomalies due to simple magnetic models, Geophys. Prospect. 14, 3, 242–272, DOI: 10.1111/j.1365-2478.1966.tb01760.x.

    Article  Google Scholar 

  • Stewart, J.R., and P.G. Betts (2010), Implications for Proterozoic plate margin evolution from geophysical analysis and crustal-scale modeling within the western Gawler Craton, Australia, Tectonophysics 483, 1–2, 151–177, DOI: 10.1016/j.tecto.2009.11.016.

    Article  Google Scholar 

  • Thompson, D.T. (1982), EULDPH: A new technique for making computer assisted depth estimates from magnetic data, Geophysics 47, 1, 31–37, DOI: 10.1190/1.1441278.

    Article  Google Scholar 

  • USGS (2006), Aeromagnetic and gravity surveys in Afghanistan: A website for distribution of data, U.S. Geological Survey Open-File Report, 2006–1204.

    Google Scholar 

  • USGS (2008), Airborne gravity survey and ground gravity in Afghanistan: A website for distribution of data, U.S. Geological Survey Open-File Report, 2008-1089.

    Google Scholar 

  • USGS (2011), Aeromagnetic surveys in Afghanistan: An updated website for distribution of data, U.S. Geological Survey Open-File Report, 2011-1247.

    Google Scholar 

  • Verduzco, B., J.D. Fairhead, C.M. Green, and C. MacKenzie (2004), New insights into magnetic derivatives for structural mapping, The Leading Edge 23, 116–119.

    Article  Google Scholar 

  • Wheeler, R., C.G. Bufe, M.L. Johnson, and R.L. Dart (2005), Seismotectonic map of Afghanistan, with annotated bibliography, U.S.G.S. Open-File Report, 2005–1264.

    Google Scholar 

  • Yassaghi, A. (2006), Integration of Landsat imagery interpretation and geomagnetic data on verification of deep-seated transverse fault lineaments in SE Zagros, Iran, Int. J. Remote Sens. 27, 20, 4529–4544, DOI: 10.1080/ 01431160600661283.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Earth Resources Engineering, Kyushu University, Faculty of Engineering, Fukuoka, Japan

    Hakim Saibi & Masood Azizi

  2. Dept. of Geology, United Arab Emirates University, Al-Ain, United Arab Emirates

    Hakim Saibi

  3. Department of Geology and Geophysics, King Saud University, Riyadh, Saudi Arabia

    Saad Mogren

Authors
  1. Hakim Saibi
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Masood Azizi
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Saad Mogren
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Hakim Saibi.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saibi, H., Azizi, M. & Mogren, S. Structural Investigations of Afghanistan Deduced from Remote Sensing and Potential Field Data. Acta Geophys. 64, 978–1003 (2016). https://doi.org/10.1515/acgeo-2016-0046

Download citation

  • Received: 24 December 2014

  • Revised: 22 June 2015

  • Accepted: 26 August 2015

  • Published: 02 December 2016

  • Issue Date: August 2016

  • DOI: https://doi.org/10.1515/acgeo-2016-0046

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Key words

  • gravity
  • magnetic
  • remote sensing
  • structure
  • Afghanistan
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.