Skip to main content

Advertisement

SpringerLink
Correction of Hydrological and Oceanic Effects from GRACE Data by Combination of the Steric Sea Level, Altimetry Data and GLDAS Model
Download PDF
Download PDF
  • Open Access
  • Published: 02 December 2016

Correction of Hydrological and Oceanic Effects from GRACE Data by Combination of the Steric Sea Level, Altimetry Data and GLDAS Model

  • Farzam Fatolazadeh1,
  • Behzad Voosoghi1 &
  • Mehdi Raoofian Naeeni1 

Acta Geophysica volume 64, pages 1193–1210 (2016)Cite this article

  • 330 Accesses

  • 3 Citations

  • Metrics details

Abstract

In this study, a scheme to estimate oceanic and hydrological effects in the GRACE (Gravity Recovery and Climate Experiment) data is presented. The aim is to reveal tectonic signals for the case of the Sumatra earthquake on 26 December 2004. The variations of hydrological and oceanic effects are estimated with the aid of data set of GRACE, altimetry, World Ocean Atlas, and the GLDAS model for a period of January 2003 to December 2006. The time series of computed gravity changes over Sumatra region show some correlations to the deformation resulting from the earthquake occurred in December 2004. The maximum and minimum impacts of hydrological and oceanic effects on gravity changes are about 3 μGal in radial direction and–5 μGal in northward direction. The maximum and minimum amounts of gravitational gradient changes after the correction are 0.2 and–0.25 mE, which indicates the significant influences of hydrological and oceanic sources on the desired signal.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  • Agnew, D.C. (2007), Earth tides. In: T.A. Herring (ed.), Treatise on Geophysics: Geodesy, Elsevier, New York, 163–195.

    Chapter  Google Scholar 

  • Bao, L.F., A. Piatanesi, Y. Lu, H.T. Hsu, and X.H. Zhou (2005), Sumatra tsunami affects observations by GRACE satellites, Eos Trans. AGU 86, 39, 353–356, DOI: 10.1029/2005EO390002.

    Article  Google Scholar 

  • Chambers, D.P. (2006a), Evaluation of new GRACE time-variable gravity data over the ocean, Geophys. Res. Lett. 33, 17, L17603, DOI: 10.1029/2006GL 027296.

    Article  Google Scholar 

  • Chambers, D.P. (2006b), Observing seasonal steric sea level variations with GRACE and satellite altimetry, J. Geophys. Res. 111, C3, C03010, DOI: 10.1029/2005JC002914.

    Article  Google Scholar 

  • Chen, J.L., C.R. Wilson, B.D. Tapley, and S. Grand (2007), GRACE detects coseismic and postseismic deformation from the Sumatra–Andaman earthquake, Geophys. Res. Lett. 34, 13, L13302, DOI: 10.1029/2007GL030356.

    Article  Google Scholar 

  • Creutzfeldt, B., A. Güntner, H. Wziontek, and B. Merz (2010), Reducing local hydrology from high-precision gravity measurements: a lysimeter-based approach, Geophys. J. Int. 183, 1, 178–187, DOI: 10.1111/j.1365-246X.2010. 04742.x.

    Article  Google Scholar 

  • Ducet, N., P.Y. Le Traon, and G. Reverdin (2000), Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2, J. Geophys. Res. 105, C8, 19477–19498, DOI: 10.1029/2000JC900063.

    Article  Google Scholar 

  • Elsaka, B. (2014), Sub-monthly gravity field recovery from simulated multi-GRACE mission type, Acta Geophys. 62, 1, 241–258, DOI: 10.2478/s11600-013-0170-9.

    Article  Google Scholar 

  • Eshagh, M. (2010), Alternative expressions for gravity gradients in local north-oriented frame and tensor spherical harmonics, Acta Geophys. 58, 2, 215–243, DOI: 10.2478/s11600-009-0048-z.

    Article  Google Scholar 

  • Eshagh, M., and M. Abdollahzadeh (2010), Semi-vectorization: an efficient technique for synthesis and analysis of gravity gradiometry data, Earth Sci. Inform. 3, 3, 149–158, DOI: 10.1007/s12145-010-0062-3.

    Article  Google Scholar 

  • Eshagh, M., and M. Abdollahzadeh (2012), Software for generating gravity gradients using a geopotential model based on an irregular semivectorization algorithm, Comput. Geosci. 39, 152–160, DOI: 10.1016/j.cageo.2011.06.003.

    Google Scholar 

  • Eshagh, M., J.-M. Lemoine, P. Gegout, and R. Biancale (2013), On regularized time varying gravity field models based on GRACE data and their comparison with hydrological models, Acta Geophys. 61, 1, 1–17, DOI: 10.2478/s11600-012-0053-5.

    Article  Google Scholar 

  • Fatolazadeh, F., B. Voosoghi, and M. Raoofian Naeeni (2016), Wavelet and Gaussian approaches for estimation of groundwater variations using GRACE data, Ground Water 54, 1, 74–81, DOI: 10.1011/gwat.12325.

    Article  Google Scholar 

  • Feng, G., and S. Jin (2012), Global water cycle and climate change signals observed by satellite gravimetry. In: 2012 IEEE Int. Geoscience and Remote Sensing Symposium (IGARSS), 22-27 July 2012, Munich, Germany, 832–835, DOI: 10.1109/IGARSS.2012.6351432.

    Google Scholar 

  • Flechtner, F. (2007), GRACE 327-750 (GR-GFZ-AOD-0001). AOD1B product description document for product releases 01 to 04, Rev. 3.1, Gravity Recovery and Climate Experiment, GeoForschungszentrum, Potsdam, Germany.

    Google Scholar 

  • Han, S.-C., R. Riva, J. Sauber, and E. Okal (2013), Source parameter inversion for recent great earthquakes from a decade-long observation of global gravity fields, J. Geophys. Res. 118, 3, 1240–1267, DOI: 10.1002/jgrb.50116.

    Article  Google Scholar 

  • Heiskanen, W.A., and H. Moritz (1967), Physical Geodesy, W.H. Freeman, San Francisco.

    Google Scholar 

  • Ishii, M., M. Kimoto, K. Sakamoto, and S.I. Iwasaki (2006), Steric sea level changes estimated from historical ocean subsurface temperature and salinity analyses, J. Oceanogr. 62, 2, 155–170, DOI: 10.1007/s10872-006-0041-y.

    Article  Google Scholar 

  • Jayne, S.R., J.M. Wahr, and F.O. Bryan (2003), Observing ocean heat content using satellite gravity and altimetry, J. Geophys. Res. 108, C2, 3031, DOI: 10.1029/2002JC001619.

    Article  Google Scholar 

  • Jin, S.G., AA. Hassan, and G.P. Feng (2012), Assessment of terrestrial water contributions to polar motion from GRACE and hydrological models, J. Geodyn. 62, 40–48, DOI: 10.1016/j.jog.2012.01.009.

    Article  Google Scholar 

  • Lombard, A., D. Garcia, G. Ramillien, A. Cazenave, R. Biancale, J.M. Lemoine, F. Flechtner, R. Schmidt, and M. Ishii (2007), Estimation of steric sea level variations from combined GRACE and Jason-1 data, Earth Planet. Sci. Lett. 254, 1–2, 194–202, DOI: 10.1016/j.epsl.2006.11.035.

    Article  Google Scholar 

  • Lorenz, C., H. Kunstmann, B. Devaraju, M.J. Tourian, N. Sneeuw, and J. Riegger (2014), Large-scale runoff from landmasses: a global assessment of the closure of the hydrological and atmospheric water balances, J. Hydrometeorol. 15, 6, 2111–2139, DOI: 10.1175/JHM-D-13-0157.1.

    Article  Google Scholar 

  • Luthcke, S.B., H.J. Zwally, W. Abdalati, D.D. Rowlands, R.D. Ray, R.S. Nerem, F.G., Lemoine, J.J. McCarthy, and D.S. Chinn (2006), Recent Greenland ice mass loss by drainage system from satellite gravimetry observations, Science 314, 5803, 1286–1289, DOI: 10.1126/science.1130776.

    Article  Google Scholar 

  • Lyard, F., F. Lefevre, T. Letellier, and O. Francis (2006), Modelling the global ocean tides: modern insights from FES2004, Ocean Dynam. 56, 5–6, 394–415, DOI: 10.1007/s10236-006-0086-x.

    Article  Google Scholar 

  • Rajner, M., T. Olszak, J. Rogowski, and J. Walo (2012), The Influence of continental water storage on gravity rates estimates: case study using absolute gravity measurements from area of Lower Silesia, Poland, Acta Geodyn Geomater. 9, 4, 168, 449–455.

    Google Scholar 

  • Rodell, M., P.R. Houser, U. Jambor, J. Gottschalck, K. Mitchell, C.J. Meng, K. Arsenault, B. Cosgrove, J. Radakovich, M. Bosilovich, J.K. Entin, J.P. Walker, D. Lohmann, and D. Toll (2004), The Global Land Data Assimilation System, Bull. Am. Meteorol. Soc. 85, 3, 381–394, DOI: 10.1175/BAMS-85-3-381.

    Article  Google Scholar 

  • Sneeuw, N., C. Lorenz, B. Devaraju, M.J. Tourian, J. Riegger, H. Kunstmann, and A. Bárdossy (2014), Estimating runoff using hydro-geodetic approaches, Surv. Geophys. 35, 6, 1333–1359, DOI: 10.1007/s10712-014-9300-4.

    Article  Google Scholar 

  • Stephens, C., J.I. Antonov, T.P. Boyer, M.E. Conkright, R.A. Locarnini, T.D. O’Brien, and H.E. Garcia (2002), World Ocean Atlas 2001, Volume 1. Temperature, NOAA Atlas NESDIS 49, U.S. Gov. Print. Off., Washington, D.C.

    Google Scholar 

  • Tapley, B.D., S. Bettadpur, M. Watkins, and C. Reigber (2004), The gravity recovery and climate experiment: Mission overview and early results, Geophys. Res. Lett. 31, 9, L09607, DOI: 10.1029/2004GL019920.

    Article  Google Scholar 

  • Tourian, M.J., O. Elmi, Q. Chen, B. Devaraju, S. Roohi, and N. Sneeuw (2015), A spaceborne multisensor approach to monitor the desiccation of Lake Urmia in Iran, Remote Sens. Environ. 156, 349–360, DOI: 10.1016/j.rse.2014.10.006.

    Article  Google Scholar 

  • Tsoulis, D., and K. Patlakis (2014), Spectral assessment of isostatic gravity models against CHAMP, GRACE, GOCE satellite-only and combined gravity models, Acta Geophys. 62, 4, 679–698, DOI: 10.2478/s11600-013-0176-3.

    Article  Google Scholar 

  • Velicogna, I., and J. Wahr (2006), Measurements of time-variable gravity show mass loss in Antarctica, Science 311, 5768, 1754–1756, DOI: 10.1126/science.1123785.

    Article  Google Scholar 

  • Wahr, J., M. Molenaar, and F. Bryan (1998), Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE, J. Geophys. Res. 103, B12, 30205–30230, DOI: 10.1029/98JB02844.

    Article  Google Scholar 

  • Wahr, J., S. Swenson, V. Zlotnicki, and I. Velicogna (2004), Time-variable gravity from GRACE: First results, Geophys. Res. Lett. 31, 11, L11501, DOI: 10.1029/2004GL019779.

    Article  Google Scholar 

  • Wang, L., C.K. Shum, and C. Jekeli (2012), Gravitational gradient changes following the 2004 December 26 Sumatra–Andaman earthquake inferred from GRACE, Geophys. J. Int. 191, 3, 1109–1118, DOI: 10.1111/j.1365-246X.2012.05674.x.

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Faculty of Geodesy and Geomatics Engineering, K.N. Toosi University of Technology, Tehran, Iran

    Farzam Fatolazadeh, Behzad Voosoghi & Mehdi Raoofian Naeeni

Authors
  1. Farzam Fatolazadeh
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Behzad Voosoghi
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Mehdi Raoofian Naeeni
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Mehdi Raoofian Naeeni.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fatolazadeh, F., Voosoghi, B. & Raoofian Naeeni, M. Correction of Hydrological and Oceanic Effects from GRACE Data by Combination of the Steric Sea Level, Altimetry Data and GLDAS Model. Acta Geophys. 64, 1193–1210 (2016). https://doi.org/10.1515/acgeo-2016-0034

Download citation

  • Received: 22 April 2015

  • Revised: 10 July 2015

  • Accepted: 14 July 2015

  • Published: 02 December 2016

  • Issue Date: August 2016

  • DOI: https://doi.org/10.1515/acgeo-2016-0034

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Key words

  • hydrological and oceanic effects
  • GRACE data
  • World Ocean Atlas
  • GLDAS model
  • gravitational gradient changes
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.