Skip to main content

Advertisement

SpringerLink
Go to cart
  1. Home
  2. Acta Geophysica
  3. Article
Influence of Component Temperature Derivation from Dual Angle Thermal Infrared Observations on TSEB Flux Estimates Over an Irrigated Vineyard
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Evaluation of TSEB turbulent fluxes using different methods for the retrieval of soil and canopy component temperatures from UAV thermal and multispectral imagery

14 September 2018

Héctor Nieto, William P. Kustas, … Lynn G. McKee

Downwelling longwave radiation and sensible heat flux observations are critical for surface temperature and emissivity estimation from flux tower data

21 May 2022

Gitanjali Thakur, Stanislaus J. Schymanski, … Mauro Sulis

Combing both simulated and field-measured data to develop robust hyperspectral indices for tracing canopy transpiration in drought-tolerant plant

11 December 2018

Jia Jin, Quan Wang & Jinlin Wang

Evaluation of satellite Leaf Area Index in California vineyards for improving water use estimation

09 June 2022

Yanghui Kang, Feng Gao, … Arnon Karnieli

Estimation of the distribution of the total net radiative flux from satellite and automatic weather station data in the Upper Blue Nile basin, Ethiopia

28 October 2020

Eyale Bayable Tegegne, Yaoming Ma, … Zhikun Zhu

Comparison of vineyard evapotranspiration estimates from surface renewal using measured and modelled energy balance components in the GRAPEX project

07 February 2019

Christopher K. Parry, William P. Kustas, … Andrew J. McElrone

Development of satellite-based surface methane flux model for major agro-ecosystems using energy balance diagnostics

02 June 2020

Sneha Thakur, Bimal K. Bhattacharya & Hitesh A. Solanki

Integration of MODIS-derived indices and field observations to estimate surface soil moisture at regional scales

03 August 2021

Nabi Olah Gholami Bidkhani, Mohammad Reza Mobasheri & Alireza Safdarinezhad

Application of a remote-sensing three-source energy balance model to improve evapotranspiration partitioning in vineyards

05 April 2022

Vicente Burchard-Levine, Héctor Nieto, … Nick Dokoozlian

Download PDF
  • Open Access
  • Published: 17 December 2016

Influence of Component Temperature Derivation from Dual Angle Thermal Infrared Observations on TSEB Flux Estimates Over an Irrigated Vineyard

  • Ana Andreu1,
  • Wim J. Timmermans2,
  • Drazen Skokovic3 &
  • …
  • Maria P. Gonzalez-Dugo4 

Acta Geophysica volume 63, pages 1540–1570 (2015)Cite this article

  • 329 Accesses

  • 8 Citations

  • Metrics details

ab]Abstract

A two-source model for deriving surface energy fluxes and their soil and canopy components was evaluated using multi-angle airborne observations. In the original formulation (TSEB1), a single temperature observation, Priestley—Taylor parameterization and the vegetation fraction are used to derive the component fluxes. When temperature observations are made from different angles, soil and canopy temperatures can be extracted directly. Two dual angle model versions are compared versus TSEB1: one incorporating the Priestley—Taylor parameterization (TSEB2I) and one using the component temperatures directly (TSEB2D), for which data from airborne campaigns over an agricultural area in Spain are used. Validation of TSEB1 versus ground measurements showed RMSD values of 28 and 10 Wm−2 for sensible and latent heat fluxes, respectively. Reasonable agreement between TSEB1 and TSEB2I was found, but a rather low correlation between TSEB1 and TSEB2D was observed. The TSEB2D estimates appear to be more realistic under the given conditions.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  • Anderson, M.C., J.M. Norman, G.R. Diak, W.P. Kustas, and J.R. Mecikalski (1997), A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing, Remote Sens. Environ. 60, 2, 195–216, DOI: 10.1016/S0034-4257(96)00215-5.

    Article  Google Scholar 

  • Anton, J.A., and J.K. Ross (1987), Emissivity of the vegetation-soil system, Sov. J. Remote Sens. 5, 49–55 (in Russian with English summary).

    Google Scholar 

  • Brutsaert, W. (1982), Evaporation into the Atmosphere. Theory, History, and Applications, Springer Science & Business Media, Dordrecht, DOI: 10.1007/978-94-017-1497-6, 299 pp.

    Book  Google Scholar 

  • Campbell, G.S., and J.M. Norman (eds.) (1998), An Introduction to Environmental Biophysics, 2nd ed., Springer, New York.

  • Choudhury, B.J. (1987), Relationships between vegetation indices, radiation absorption, and net photosynthesis evaluated by a sensitivity analysis, Remote Sens. Environ. 22, 2, 209–233, DOI: 10.1016/0034-4257(87)90059-9.

    Article  Google Scholar 

  • Choudhury, B.J., N.U. Ahmed, S.B. Idso, R.J. Reginato, and C.S.T. Daughtry (1994), Relations between evaporation coefficients and vegetation indices studied by model simulations, Remote Sens. Environ. 50, 1, 1–17, DOI: 10.1016/0034-4257(94)90090-6.

    Article  Google Scholar 

  • Colaizzi, P.D., W.P. Kustas, M.C. Anderson, N. Agam, J.A. Tolk, S.R. Evett, T.A. Howell, P.H. Gowda, and S.A. O’Shaughnessy (2012a), Two-source energy balance model estimates of evapotranspiration using component and composite surface temperatures, Adv. Water Resour. 50, 134–151, DOI: 10.1016/j.advwatres.2012.06.004.

    Article  Google Scholar 

  • Colaizzi, P.D., S.R. Evett, S.A. O’Shaughnessy, and T.A. Howell (2012b), Using plant canopy temperature to improve irrigated crop management. In: Proc. 24th Annual Central Plains Irrigation Conf., 21–22 February 2012, Colby, USA, 203–223.

    Google Scholar 

  • Corbari, C., W. Timmermans, and A. Andreu (2015), Intercomparison of surface energy fluxes estimates from the FEST-EWB and TSEB models over the heterogeneous REFLEX 2012 site (Barrax, Spain), Acta Geophys. 63, 6, 1609–1638, DOI: 10.2478/s11600-014-0258-x (this issue).

    Article  Google Scholar 

  • de Miguel, E., M. Jiménez, I. Pérez, Ó.G. de la Camara., F. Munoz, and J.A. Gómez-Sanchez (2015), AHS and CASI processing for the REFLEX remote sensing campaign: methods and results, Acta Geophys. 63, 6, 1485–1498, DOI: 10.1515/acgeo-2015-0031 (this issue).

    Article  Google Scholar 

  • French, A.N., F. Jacob, M.C. Anderson, W.P. Kustas, W. Timmermans, A. Gieske, Z. Su, H. Su, M.F. McCabe, F. Li, J. Prueger, and N. Brunsell (2005), Surface energy fluxes with the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) at the Iowa 2002 SMACEX site (USA), Remote Sens. Environ. 99, 1–2, 55–65, DOI: 10.1016/j.rse.2005.05.015.

    Article  Google Scholar 

  • Gardner, B.R., D.C. Nielsen, and C.C. Shock (1992), Infrared thermometry and the Crop Water Stress Index. I. History, theory, and baselines, J. Prod. Agric. 5, 4, 462–466, DOI: 10.2134/jpa1992.0462.

    Article  Google Scholar 

  • Gillespie, A., S. Rokugawa, T. Matsunaga, J.S. Cothern, S. Hook, and A.B. Kahle (1998), A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images, IEEE Trans. Geosci. Remote Sens. 36, 4, 1113–1126, DOI: 10.1109/36.700995.

    Article  Google Scholar 

  • Gonzalez-Dugo, M.P., C.M.U. Neale, L. Mateos, W.P. Kustas, J.H. Prueger, M.C. Anderson, and F. Li (2009), A comparison of operational remote sensing-based models for estimating crop evapotranspiration, Agr. Forest Meteorol. 149, 11, 1843–1853, DOI: 10.1016/j.agrformet.2009.06.012.

    Article  Google Scholar 

  • Huntingford, C., S.J. Allen, and R.J. Harding (1995), An intercomparison of single and dual-source vegetation-atmosphere transfer models applied to transpiration from Sahelian savannah, Bound.-Lay. Meteorol. 74, 4, 397–418, DOI: 10.1007/BF00712380.

    Article  Google Scholar 

  • Jackson, R.D., S.B. Idso, R.J. Reginato, and P.J. Pinter Jr. (1981), Canopy temperature as a crop water stress indicator, Water Resour. Res. 17, 4,, DOI: 10.1029/WR017i004p01133.

    Google Scholar 

  • Kalma, J.D., T.R. McVicar, and M.F. McCabe (2008), Estimating land surface evaporation: A review of methods using remotely sensed surface temperature, data, Surv. Geophys. 29, 4–5, 421–469, DOI: 10.1007/s10712-008-9037-z.

    Article  Google Scholar 

  • Kustas, W.P., and J.M. Norman (1997), A two-source approach for estimating turbulent fluxes using multiple angle thermal infrared observations, Water Resour. Res. 33, 6, 1495–1508, DOI: 10.1029/97WR00704.

    Article  Google Scholar 

  • Kustas, W.P., and J.M. Norman (1999), Evaluation of soil and vegetation heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover, Agr. Forest Meteorol. 94, 1, 13–29, DOI: 10.1016/S0168-1923(99)00005-2.

    Article  Google Scholar 

  • Kustas, W.P., and J.M. Norman (2000), A two-source energy balance approach using directional radiometric temperature observations for sparse canopy covered surfaces, Agron. J. 92, 5, 847–854, DOI: 10.2134/agronj2000.925847x.

    Article  Google Scholar 

  • Kustas, W.P., D.I. Stannard, and K.J. Allwine (1996), Variability in surface energy flux partitioning during Washita’ 92: Resulting effects on Penman-Monteith and Priestley-Taylor parameters, Agr. Forest Meteorol. 82, 1–4, 171–193, DOI: 10.1016/0168-1923(96)02334-9.

    Article  Google Scholar 

  • Kustas, W.P., X. Zhan, and T.J. Schmugge (1998), Combining optical and microwave remote sensing for mapping energy fluxes in a semiarid watershed, Remote Sens. Environ. 64, 2, 116–131, DOI: 10.1016/S0034-4257(97) 00176-4.

    Article  Google Scholar 

  • Lhomme, J.P., and A. Chehbouni (1999), Comments on dual-source vegetation-atmosphere transfer models, Agr. Forest Meteorol. 94, 3–4, 269–273, DOI: 10.1016/S0168-1923(98)00109-9.

    Article  Google Scholar 

  • Li, F., W.P. Kustas, J.H. Prueger, C.M.U. Neale, and T.J. Jackson (2005), Utility of remote sensing-based two-source energy balance model under low- and high-vegetation cover conditions, J. Hydrometeor. 6, 6, 878–891, DOI: 10.1175/JHM464.1.

    Article  Google Scholar 

  • Massman, W.J., and J.C. Weil (1999), An analytical one-dimensional second-order closure model of turbulence statistics and the Lagrangian time scale within and above plant canopies of arbitrary structure, Bound.-Lay. Meteorol. 91, 1, 81–107, DOI: 10.1023/A:1001810204560.

    Article  Google Scholar 

  • Mattar, C., B. Franch, J.A. Sobrino, C. Corbari, J.C. Jiménez-Munoz, L. Olivera-Guerra, D. Skokovic, G. Sória, R. Oltra-Carriò, Y. Julien, and M. Mancini (2014), Impacts of the broadband albedo on actual evapotranspiration estimated by S-SEBI model over an agricultural area, Remote Sens. Environ. 147, 23–42, DOI: 10.1016/j.rse.2014.02.011.

    Article  Google Scholar 

  • Merlin, O., and A. Chehbouni (2004), Different approaches in estimating heat flux using dual angle observations of radiative surface temperature, Int. J. Remote Sens. 25, 1, 275–289, DOI: 10.1080/0143116031000116408.

    Article  Google Scholar 

  • Morillas, L., M. Garcia, H. Nieto, L. Villagarcia, I. Sandholt, M.P. Gonzalez-Dugo, P.J. Zarco-Tejada, and F. Domingo (2013), Using radiometric surface temperature for surface energy flux estimation in Mediterranean drylands from a two-source perspective, Remote Sens. Environ. 136, 234–246, DOI: 10.1016/j.rse.2013.05.010.

    Article  Google Scholar 

  • Norman, J.M., W.P. Kustas, and K.S. Humes (1995), Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature, Agr. Forest Meteorol. 77, 3–4, 263–293, DOI: 10.1016/0168-1923(95)02265-Y.

    Article  Google Scholar 

  • Priestley, C.H.B., and R.J. Taylor (1972), On the assessment of surface heat flux and evaporation using large-scale parameters, Mon. Weather Rev. 100, 2, 81–92, DOI: 10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2.

    Article  Google Scholar 

  • Scott, R.L., T.E. Huxman, W.L. Cable, and W.E. Emmerich (2006), Partitioning of evapotranspiration and its relation to carbon dioxide exchange in a Chihua-huan Desert shrubland, Hydrol. Process. 20, 15, 3227–3243, DOI: 10.1002/hyp.6329.

    Article  Google Scholar 

  • Shuttleworth, W.J., and R.J. Gurney (1990), The theoretical relationship between foliage temperature and canopy resistance in sparse crops, Quart. J. Roy. Meteorol. Soc. 116, 492, 497–519, DOI: 10.1002/qj.49711649213.

    Article  Google Scholar 

  • Sobrino, J.A., J.C. Jiménez-Munoz, P.J. Zarco-Tejada, G. Sepulcre-Cantò, and E. de Miguel (2006), Land surface temperature derived from airborne hyperspectral scanner thermal infrared data, Remote Sens. Environ. 102, 1–2, 99–115, DOI: 10.1016/j.rse.2006.02.001.

    Article  Google Scholar 

  • Sobrino, J.A., J.C. Jiménez-Munoz, P.J. Zarco-Tejada, G. Sepulcre- Cantò, E. de Miguel, G. Sòria, M. Romaguera, Y. Julien, J. Cuenca, V. Hidalgo, B. Franch, C. Mattar, L. Morales, A. Gillespie, D. Sabol, L. Balick, Z. Su, L. Jia, A. Gieske, W.J. Timmermans, A. Olioso, F. Nerry, L. Guanter, J. Moreno, and Q. Shen (2009), Thermal remote sensing from Airborne Hyperspectral Scanner data in the framework of the SPARC and SEN2FLEX projects: an overview, Hydrol. Earth Syst. Sci. 13, 2031–2037, DOI: 10.5194/hess-13-2031-2009.

    Article  Google Scholar 

  • Timmermans, J., C. van der Tol, W. Verhoef, and Z. Su (2008), Contact and directional radiative temperature measurements of sunlit and shaded land surface components during the SEN2FLEX 2005 campaign, Int. J. Remote Sens. 29, 17–18, 5183–5192, DOI: 10.1080/01431160802036599.

    Article  Google Scholar 

  • Timmermans, W.J., W.P. Kustas, M.C. Anderson, and A.N. French (2007), An intercomparison of the Surface Energy Balance Algorithm for Land (SEBAL) and the Two-Source Energy Balance (TSEB) modeling schemes, Remote Sens. Environ. 108, 4, 369–384, DOI: 10.1016/j.rse.2006.11.028.

    Article  Google Scholar 

  • Timmermans, W.J., G. Bertoldi, J.D. Albertson, A. Olioso, Z. Su, and A.S.M. Gieske (2008), Accounting for atmospheric boundary layer variability on flux estimation from RS observations, Int. J. Remote Sens. 29, 17–18, 5275–5290, DOI: 10.1080/01431160802036383.

    Article  Google Scholar 

  • Timmermans, W.J., Z. Su, and A. Olioso (2009), Footprint issues in scintillometry over heterogeneous landscapes, Hydrol. Earth Syst. Sci. 13, 2179–2190, DOI: 10.5194/hess-13-2179-2009.

    Article  Google Scholar 

  • Timmermans, W.J., J.C. Jiménez-Munoz, V. Hidalgo, K. Richter, J.A. Sobrino, G. d’Urso, F. Mattia, G. Satalino, E. De Lathauwer, and V.R.N. Pauwels (2011), Estimation of the spatially distributed surface energy budget for AgriSAR 2006, Part I: Remote sensing model intercomparison, IEEE J. STARS 4, 2, 465–481, DOI: 10.1109/JSTARS.2010.2098019.

    Google Scholar 

  • Timmermans, W.J., C. van der Tol, J. Timmermans, M. Ucer, X. Chen, L. Alonso, J. Moreno, A. Carrara, R. Lopez, F. de la Cruz Tercero, H.L. Corcoles, E. de Miguel, J.A.G. Sanchez, I. Pérez, B. Franch, J.-C.J. Munoz, D. Skokovic, J. Sobrino, G. Soria, A. MacArthur, L. Vescovo, I. Reusen, A. Andreu, A. Burkart, C. Cilia, S. Contreras, C. Corbari, J.F. Calleja, R. Guzinski, C. Hellmann, I. Herrmann, G. Kerr, A.-L. Lazar, B. Leutner, G. Mendiguren, Nasilowska, H. Nieto, J. Pachego-Labrador, S. Pulanekar, R. Raj, A. Schikling, B. Siegmann, S. von Bueren, and Z. Su (2015), An overview of the Regional Experiments for Land-atmosphere Exchanges 2012 (REFLEX 2012) campaign, Acta Geophys. 63, 6, 1465–1484, DOI: 10.2478/s11600-014-0254-1 (this issue).

    Google Scholar 

  • van der Tol, C., W. Timmermans, C. Corbari, A. Carrara, J. Timmermans, and Z. Su (2015), An analysis of turbulent heat fluxes and the energy balance during the REFLEX campaign, Acta Geophys. 63, 6, 1516–1539, DOI: 10.1515/acgeo-2015-0061 (this issue).

    Article  Google Scholar 

  • Vesala, T., N. Kljun, U. Rannik, J. Rinne, A. Sogachev, T. Markkanen, K. Sabelfeld, T. Foken, and M.Y. Leclerc (2008), Flux and concentration footprint modelling: State of the art, Environ. Poll. 152, 3, 653–666, DOI: 10.1016/j.envpol.2007.06.070.

    Article  Google Scholar 

  • Vining, R.C., and B.L. Blad (1992), Estimation of sensible heat flux from remotely sensed canopy temperatures, J. Geophys. Res. 97, D17, 18951–18954, DOI: 10.1029/92JD01626.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Instituto de Investigación y Formación Agraria y Pesquera (IFAPA), Cordoba, Spain

    Ana Andreu

  2. Faculty of Geo-information Science and Earth Observation, Department of Water Resources, University of Twente, Enschede, The Netherlands

    Wim J. Timmermans

  3. Global Change Unit (GCU), Department of Earth Physics, University of Valencia, Valencia, Spain

    Drazen Skokovic

  4. Instituto de Investigación y Formación Agraria y Pesquera (IFAPA), Cordoba, Spain

    Maria P. Gonzalez-Dugo

Authors
  1. Ana Andreu
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Wim J. Timmermans
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Drazen Skokovic
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Maria P. Gonzalez-Dugo
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Ana Andreu.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreu, A., Timmermans, W.J., Skokovic, D. et al. Influence of Component Temperature Derivation from Dual Angle Thermal Infrared Observations on TSEB Flux Estimates Over an Irrigated Vineyard. Acta Geophys. 63, 1540–1570 (2015). https://doi.org/10.1515/acgeo-2015-0037

Download citation

  • Received: 27 June 2014

  • Revised: 27 February 2015

  • Accepted: 10 April 2015

  • Published: 17 December 2016

  • Issue Date: December 2015

  • DOI: https://doi.org/10.1515/acgeo-2015-0037

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Key words

  • Two Source Energy Balance (TSEB) model
  • component temperatures
  • resistance schemes
  • available energy
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • Your US state privacy rights
  • How we use cookies
  • Your privacy choices/Manage cookies
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.