Influence of Component Temperature Derivation from Dual Angle Thermal Infrared Observations on TSEB Flux Estimates Over an Irrigated Vineyard

ab]Abstract

A two-source model for deriving surface energy fluxes and their soil and canopy components was evaluated using multi-angle airborne observations. In the original formulation (TSEB1), a single temperature observation, Priestley—Taylor parameterization and the vegetation fraction are used to derive the component fluxes. When temperature observations are made from different angles, soil and canopy temperatures can be extracted directly. Two dual angle model versions are compared versus TSEB1: one incorporating the Priestley—Taylor parameterization (TSEB2I) and one using the component temperatures directly (TSEB2D), for which data from airborne campaigns over an agricultural area in Spain are used. Validation of TSEB1 versus ground measurements showed RMSD values of 28 and 10 Wm−2 for sensible and latent heat fluxes, respectively. Reasonable agreement between TSEB1 and TSEB2I was found, but a rather low correlation between TSEB1 and TSEB2D was observed. The TSEB2D estimates appear to be more realistic under the given conditions.

References

  1. Anderson, M.C., J.M. Norman, G.R. Diak, W.P. Kustas, and J.R. Mecikalski (1997), A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing, Remote Sens. Environ. 60, 2, 195–216, DOI: 10.1016/S0034-4257(96)00215-5.

    Article  Google Scholar 

  2. Anton, J.A., and J.K. Ross (1987), Emissivity of the vegetation-soil system, Sov. J. Remote Sens. 5, 49–55 (in Russian with English summary).

    Google Scholar 

  3. Brutsaert, W. (1982), Evaporation into the Atmosphere. Theory, History, and Applications, Springer Science & Business Media, Dordrecht, DOI: 10.1007/978-94-017-1497-6, 299 pp.

    Book  Google Scholar 

  4. Campbell, G.S., and J.M. Norman (eds.) (1998), An Introduction to Environmental Biophysics, 2nd ed., Springer, New York.

  5. Choudhury, B.J. (1987), Relationships between vegetation indices, radiation absorption, and net photosynthesis evaluated by a sensitivity analysis, Remote Sens. Environ. 22, 2, 209–233, DOI: 10.1016/0034-4257(87)90059-9.

    Article  Google Scholar 

  6. Choudhury, B.J., N.U. Ahmed, S.B. Idso, R.J. Reginato, and C.S.T. Daughtry (1994), Relations between evaporation coefficients and vegetation indices studied by model simulations, Remote Sens. Environ. 50, 1, 1–17, DOI: 10.1016/0034-4257(94)90090-6.

    Article  Google Scholar 

  7. Colaizzi, P.D., W.P. Kustas, M.C. Anderson, N. Agam, J.A. Tolk, S.R. Evett, T.A. Howell, P.H. Gowda, and S.A. O’Shaughnessy (2012a), Two-source energy balance model estimates of evapotranspiration using component and composite surface temperatures, Adv. Water Resour. 50, 134–151, DOI: 10.1016/j.advwatres.2012.06.004.

    Article  Google Scholar 

  8. Colaizzi, P.D., S.R. Evett, S.A. O’Shaughnessy, and T.A. Howell (2012b), Using plant canopy temperature to improve irrigated crop management. In: Proc. 24th Annual Central Plains Irrigation Conf., 21–22 February 2012, Colby, USA, 203–223.

    Google Scholar 

  9. Corbari, C., W. Timmermans, and A. Andreu (2015), Intercomparison of surface energy fluxes estimates from the FEST-EWB and TSEB models over the heterogeneous REFLEX 2012 site (Barrax, Spain), Acta Geophys. 63, 6, 1609–1638, DOI: 10.2478/s11600-014-0258-x (this issue).

    Article  Google Scholar 

  10. de Miguel, E., M. Jiménez, I. Pérez, Ó.G. de la Camara., F. Munoz, and J.A. Gómez-Sanchez (2015), AHS and CASI processing for the REFLEX remote sensing campaign: methods and results, Acta Geophys. 63, 6, 1485–1498, DOI: 10.1515/acgeo-2015-0031 (this issue).

    Article  Google Scholar 

  11. French, A.N., F. Jacob, M.C. Anderson, W.P. Kustas, W. Timmermans, A. Gieske, Z. Su, H. Su, M.F. McCabe, F. Li, J. Prueger, and N. Brunsell (2005), Surface energy fluxes with the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) at the Iowa 2002 SMACEX site (USA), Remote Sens. Environ. 99, 1–2, 55–65, DOI: 10.1016/j.rse.2005.05.015.

    Article  Google Scholar 

  12. Gardner, B.R., D.C. Nielsen, and C.C. Shock (1992), Infrared thermometry and the Crop Water Stress Index. I. History, theory, and baselines, J. Prod. Agric. 5, 4, 462–466, DOI: 10.2134/jpa1992.0462.

    Article  Google Scholar 

  13. Gillespie, A., S. Rokugawa, T. Matsunaga, J.S. Cothern, S. Hook, and A.B. Kahle (1998), A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images, IEEE Trans. Geosci. Remote Sens. 36, 4, 1113–1126, DOI: 10.1109/36.700995.

    Article  Google Scholar 

  14. Gonzalez-Dugo, M.P., C.M.U. Neale, L. Mateos, W.P. Kustas, J.H. Prueger, M.C. Anderson, and F. Li (2009), A comparison of operational remote sensing-based models for estimating crop evapotranspiration, Agr. Forest Meteorol. 149, 11, 1843–1853, DOI: 10.1016/j.agrformet.2009.06.012.

    Article  Google Scholar 

  15. Huntingford, C., S.J. Allen, and R.J. Harding (1995), An intercomparison of single and dual-source vegetation-atmosphere transfer models applied to transpiration from Sahelian savannah, Bound.-Lay. Meteorol. 74, 4, 397–418, DOI: 10.1007/BF00712380.

    Article  Google Scholar 

  16. Jackson, R.D., S.B. Idso, R.J. Reginato, and P.J. Pinter Jr. (1981), Canopy temperature as a crop water stress indicator, Water Resour. Res. 17, 4,, DOI: 10.1029/WR017i004p01133.

    Google Scholar 

  17. Kalma, J.D., T.R. McVicar, and M.F. McCabe (2008), Estimating land surface evaporation: A review of methods using remotely sensed surface temperature, data, Surv. Geophys. 29, 4–5, 421–469, DOI: 10.1007/s10712-008-9037-z.

    Article  Google Scholar 

  18. Kustas, W.P., and J.M. Norman (1997), A two-source approach for estimating turbulent fluxes using multiple angle thermal infrared observations, Water Resour. Res. 33, 6, 1495–1508, DOI: 10.1029/97WR00704.

    Article  Google Scholar 

  19. Kustas, W.P., and J.M. Norman (1999), Evaluation of soil and vegetation heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover, Agr. Forest Meteorol. 94, 1, 13–29, DOI: 10.1016/S0168-1923(99)00005-2.

    Article  Google Scholar 

  20. Kustas, W.P., and J.M. Norman (2000), A two-source energy balance approach using directional radiometric temperature observations for sparse canopy covered surfaces, Agron. J. 92, 5, 847–854, DOI: 10.2134/agronj2000.925847x.

    Article  Google Scholar 

  21. Kustas, W.P., D.I. Stannard, and K.J. Allwine (1996), Variability in surface energy flux partitioning during Washita’ 92: Resulting effects on Penman-Monteith and Priestley-Taylor parameters, Agr. Forest Meteorol. 82, 1–4, 171–193, DOI: 10.1016/0168-1923(96)02334-9.

    Article  Google Scholar 

  22. Kustas, W.P., X. Zhan, and T.J. Schmugge (1998), Combining optical and microwave remote sensing for mapping energy fluxes in a semiarid watershed, Remote Sens. Environ. 64, 2, 116–131, DOI: 10.1016/S0034-4257(97) 00176-4.

    Article  Google Scholar 

  23. Lhomme, J.P., and A. Chehbouni (1999), Comments on dual-source vegetation-atmosphere transfer models, Agr. Forest Meteorol. 94, 3–4, 269–273, DOI: 10.1016/S0168-1923(98)00109-9.

    Article  Google Scholar 

  24. Li, F., W.P. Kustas, J.H. Prueger, C.M.U. Neale, and T.J. Jackson (2005), Utility of remote sensing-based two-source energy balance model under low- and high-vegetation cover conditions, J. Hydrometeor. 6, 6, 878–891, DOI: 10.1175/JHM464.1.

    Article  Google Scholar 

  25. Massman, W.J., and J.C. Weil (1999), An analytical one-dimensional second-order closure model of turbulence statistics and the Lagrangian time scale within and above plant canopies of arbitrary structure, Bound.-Lay. Meteorol. 91, 1, 81–107, DOI: 10.1023/A:1001810204560.

    Article  Google Scholar 

  26. Mattar, C., B. Franch, J.A. Sobrino, C. Corbari, J.C. Jiménez-Munoz, L. Olivera-Guerra, D. Skokovic, G. Sória, R. Oltra-Carriò, Y. Julien, and M. Mancini (2014), Impacts of the broadband albedo on actual evapotranspiration estimated by S-SEBI model over an agricultural area, Remote Sens. Environ. 147, 23–42, DOI: 10.1016/j.rse.2014.02.011.

    Article  Google Scholar 

  27. Merlin, O., and A. Chehbouni (2004), Different approaches in estimating heat flux using dual angle observations of radiative surface temperature, Int. J. Remote Sens. 25, 1, 275–289, DOI: 10.1080/0143116031000116408.

    Article  Google Scholar 

  28. Morillas, L., M. Garcia, H. Nieto, L. Villagarcia, I. Sandholt, M.P. Gonzalez-Dugo, P.J. Zarco-Tejada, and F. Domingo (2013), Using radiometric surface temperature for surface energy flux estimation in Mediterranean drylands from a two-source perspective, Remote Sens. Environ. 136, 234–246, DOI: 10.1016/j.rse.2013.05.010.

    Article  Google Scholar 

  29. Norman, J.M., W.P. Kustas, and K.S. Humes (1995), Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature, Agr. Forest Meteorol. 77, 3–4, 263–293, DOI: 10.1016/0168-1923(95)02265-Y.

    Article  Google Scholar 

  30. Priestley, C.H.B., and R.J. Taylor (1972), On the assessment of surface heat flux and evaporation using large-scale parameters, Mon. Weather Rev. 100, 2, 81–92, DOI: 10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2.

    Article  Google Scholar 

  31. Scott, R.L., T.E. Huxman, W.L. Cable, and W.E. Emmerich (2006), Partitioning of evapotranspiration and its relation to carbon dioxide exchange in a Chihua-huan Desert shrubland, Hydrol. Process. 20, 15, 3227–3243, DOI: 10.1002/hyp.6329.

    Article  Google Scholar 

  32. Shuttleworth, W.J., and R.J. Gurney (1990), The theoretical relationship between foliage temperature and canopy resistance in sparse crops, Quart. J. Roy. Meteorol. Soc. 116, 492, 497–519, DOI: 10.1002/qj.49711649213.

    Article  Google Scholar 

  33. Sobrino, J.A., J.C. Jiménez-Munoz, P.J. Zarco-Tejada, G. Sepulcre-Cantò, and E. de Miguel (2006), Land surface temperature derived from airborne hyperspectral scanner thermal infrared data, Remote Sens. Environ. 102, 1–2, 99–115, DOI: 10.1016/j.rse.2006.02.001.

    Article  Google Scholar 

  34. Sobrino, J.A., J.C. Jiménez-Munoz, P.J. Zarco-Tejada, G. Sepulcre- Cantò, E. de Miguel, G. Sòria, M. Romaguera, Y. Julien, J. Cuenca, V. Hidalgo, B. Franch, C. Mattar, L. Morales, A. Gillespie, D. Sabol, L. Balick, Z. Su, L. Jia, A. Gieske, W.J. Timmermans, A. Olioso, F. Nerry, L. Guanter, J. Moreno, and Q. Shen (2009), Thermal remote sensing from Airborne Hyperspectral Scanner data in the framework of the SPARC and SEN2FLEX projects: an overview, Hydrol. Earth Syst. Sci. 13, 2031–2037, DOI: 10.5194/hess-13-2031-2009.

    Article  Google Scholar 

  35. Timmermans, J., C. van der Tol, W. Verhoef, and Z. Su (2008), Contact and directional radiative temperature measurements of sunlit and shaded land surface components during the SEN2FLEX 2005 campaign, Int. J. Remote Sens. 29, 17–18, 5183–5192, DOI: 10.1080/01431160802036599.

    Article  Google Scholar 

  36. Timmermans, W.J., W.P. Kustas, M.C. Anderson, and A.N. French (2007), An intercomparison of the Surface Energy Balance Algorithm for Land (SEBAL) and the Two-Source Energy Balance (TSEB) modeling schemes, Remote Sens. Environ. 108, 4, 369–384, DOI: 10.1016/j.rse.2006.11.028.

    Article  Google Scholar 

  37. Timmermans, W.J., G. Bertoldi, J.D. Albertson, A. Olioso, Z. Su, and A.S.M. Gieske (2008), Accounting for atmospheric boundary layer variability on flux estimation from RS observations, Int. J. Remote Sens. 29, 17–18, 5275–5290, DOI: 10.1080/01431160802036383.

    Article  Google Scholar 

  38. Timmermans, W.J., Z. Su, and A. Olioso (2009), Footprint issues in scintillometry over heterogeneous landscapes, Hydrol. Earth Syst. Sci. 13, 2179–2190, DOI: 10.5194/hess-13-2179-2009.

    Article  Google Scholar 

  39. Timmermans, W.J., J.C. Jiménez-Munoz, V. Hidalgo, K. Richter, J.A. Sobrino, G. d’Urso, F. Mattia, G. Satalino, E. De Lathauwer, and V.R.N. Pauwels (2011), Estimation of the spatially distributed surface energy budget for AgriSAR 2006, Part I: Remote sensing model intercomparison, IEEE J. STARS 4, 2, 465–481, DOI: 10.1109/JSTARS.2010.2098019.

    Google Scholar 

  40. Timmermans, W.J., C. van der Tol, J. Timmermans, M. Ucer, X. Chen, L. Alonso, J. Moreno, A. Carrara, R. Lopez, F. de la Cruz Tercero, H.L. Corcoles, E. de Miguel, J.A.G. Sanchez, I. Pérez, B. Franch, J.-C.J. Munoz, D. Skokovic, J. Sobrino, G. Soria, A. MacArthur, L. Vescovo, I. Reusen, A. Andreu, A. Burkart, C. Cilia, S. Contreras, C. Corbari, J.F. Calleja, R. Guzinski, C. Hellmann, I. Herrmann, G. Kerr, A.-L. Lazar, B. Leutner, G. Mendiguren, Nasilowska, H. Nieto, J. Pachego-Labrador, S. Pulanekar, R. Raj, A. Schikling, B. Siegmann, S. von Bueren, and Z. Su (2015), An overview of the Regional Experiments for Land-atmosphere Exchanges 2012 (REFLEX 2012) campaign, Acta Geophys. 63, 6, 1465–1484, DOI: 10.2478/s11600-014-0254-1 (this issue).

    Google Scholar 

  41. van der Tol, C., W. Timmermans, C. Corbari, A. Carrara, J. Timmermans, and Z. Su (2015), An analysis of turbulent heat fluxes and the energy balance during the REFLEX campaign, Acta Geophys. 63, 6, 1516–1539, DOI: 10.1515/acgeo-2015-0061 (this issue).

    Article  Google Scholar 

  42. Vesala, T., N. Kljun, U. Rannik, J. Rinne, A. Sogachev, T. Markkanen, K. Sabelfeld, T. Foken, and M.Y. Leclerc (2008), Flux and concentration footprint modelling: State of the art, Environ. Poll. 152, 3, 653–666, DOI: 10.1016/j.envpol.2007.06.070.

    Article  Google Scholar 

  43. Vining, R.C., and B.L. Blad (1992), Estimation of sensible heat flux from remotely sensed canopy temperatures, J. Geophys. Res. 97, D17, 18951–18954, DOI: 10.1029/92JD01626.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ana Andreu.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Andreu, A., Timmermans, W.J., Skokovic, D. et al. Influence of Component Temperature Derivation from Dual Angle Thermal Infrared Observations on TSEB Flux Estimates Over an Irrigated Vineyard. Acta Geophys. 63, 1540–1570 (2015). https://doi.org/10.1515/acgeo-2015-0037

Download citation

Key words

  • Two Source Energy Balance (TSEB) model
  • component temperatures
  • resistance schemes
  • available energy