Advertisement

Acta Geophysica

, Volume 63, Issue 6, pp 1485–1498 | Cite as

AHS and CASI Processing for the REFLEX Remote Sensing Campaign: Methods and Results

  • Eduardo de Miguel
  • Marcos Jiménez
  • Irene Pérez
  • Óscar G. de la Cámara
  • Félix Muñoz
  • José A. Gómez-Sánchez
Open Access
Article

Abstract

The airborne spectroradiometers AHS and CASI were used as a source of hyperspectral and thermal remote sensing data during the REFLEX campaign. Data geolocation and a first simple atmospheric correction was performed by INTA in near-real time with a specific on-site setup and distributed to all campaign participants. In this paper we present briefly the AHS and CASI REFLEX flight campaign followed by a detailed description of the methodology used for image processing and finally the results obtained in terms of image quality. As a conclusion, near-real time processing for AHS and CASI level 1 geolocated products was successful as most of CASI level 2 results but further work is needed for achieving accurate AHS level 2 products.

Key words

AHS CASI image processing remote sensing 

References

  1. Ben-Dor, E., D. Schläpfer, A.J. Plaza, and T. Malthus (2013), Hyperspectral remote sensing. In: M. Wendisch, and J.-L. Brenguier (eds.), Airborne Measurements for Environmental Research: Methods and Instruments, Wiley-VCH Verlag & Co. KGaA, Weinheim, 413–456, DOI: 10.1002/9783527653218. ch8.CrossRefGoogle Scholar
  2. Guanter, L., R. Richter, and J. Moreno (2006), Spectral calibration of hyperspectral imagery using atmospheric absorption features, Appl. Optics 45, 10, 2360–2370, DOI: 10.1364/AO.45.002360.CrossRefGoogle Scholar
  3. Prakash, A. (2000), Thermal remote sensing: concepts, issues and applications, Int. Arch. Photogram. Remote Sens. 32, B1, 239–243.Google Scholar
  4. Richter, R., and D. Schläpfer (2002), Geo-atmospheric processing of airborne imaging spectrometry data. Part 2: Atmospheric/topographic correction, Int. J. Remote Sens. 23, 13, 2631–2649, DOI: 10.1080/01431160110115834.CrossRefGoogle Scholar
  5. Schaepman-Strub, G., M.E. Schaepman, T.H. Painter, S. Dangel, and J.V. Martonchik (2006), Reflectance quantities in optical remote sensing–definitions and case studies, Remote Sens. Environ. 103, 1, 27–42, DOI: 10.1016/j.rse.2006.03.002.CrossRefGoogle Scholar
  6. Schläpfer, D., and R. Richter (2002), Geo-atmospheric processing of airborne imaging spectrometry data. Part 1: Parametric orthorectification, Int. J. Remote Sens. 23, 13, 2609–2630, DOI: 10.1080/01431160110115825.CrossRefGoogle Scholar
  7. Timmermans, W., C. van der Tol, J. Timmermans, M. Ucer, X. Chen, L. Alonso, J. Moreno, A. Carrara, R. Lopez, F. de la Cruz Tercero, H.L. Corcoles, E. de Miguel, J.A.G. Sanchez, I. Pérez, B. Franch, J.-C.J. Munoz, D. Skokovic, J. Sobrino, G. Soria, A. MacArthur, L. Vescovo, I. Reusen, A. Andreu, A. Burkart, C. Cilia, S. Contreras, C. Corbari, J.F. Calleja, R. Guzinski, C. Hellmann, I. Herrmann, G. Kerr, A.-L. Lazar, B. Leutner, G. Mendiguren, S. Nasilowska, H. Nieto, J. Pachego-Labrador, S. Pulanekar, R. Raj, A. Schikling, B. Siegmann, S. von Bueren, and Z.B. Su (2015), An overview of the Regional Experiments For Land-atmosphere Exchanges 2012 (REFLEX 2012) campaign, Acta Geophys. 63, 6, 1465–1484, DOI: 10.2478/s11600-014-0254-1 (this issue).Google Scholar

Copyright information

© de Miguel et al 2015

Authors and Affiliations

  • Eduardo de Miguel
    • 1
  • Marcos Jiménez
    • 1
  • Irene Pérez
    • 1
  • Óscar G. de la Cámara
    • 1
  • Félix Muñoz
    • 1
  • José A. Gómez-Sánchez
    • 1
  1. 1.Instituto Nacional Técnica Aeroespacial (INTA)Torrejón de ArdozSpain

Personalised recommendations