Passive Seismic Experiment “13 BB Star” in the Margin of the East European Craton, Northern Poland

Abstract

The lithosphere-asthenosphere boundary (LAB) is investigated recently very effectively, mostly using seismic methods because of their deep penetration and relatively good resolution. The nature of LAB is still debated, particularly under “cold” Precambrian shields and platforms. Passive experiment “13 BB star” is dedicated to study deep structure of the Earth’s interior in the marginal zone of the East European craton in northern Poland. The seismic network consists of 13 broadband stations on the area of ca. 120 km in diameter. The network is located in the area of well-known sedimentary cover and crustal structure. Good records obtained till now, and expected during next 1-year long recording campaign, should yield images of detailed structure of the LAB, „410”, “?520”, and „660” km discontinuities, as well as mantle-core boundary and inner core.

References

  1. Bartzsch, S., S. Lebedev, and T. Meier (2011), Resolving the lithosphere-asthenosphere boundary with seismic Rayleigh waves, Geophys. J. Int. 186, 3, 1152–1164, DOI: 10.1111/j.1365-246X.2011.05096.x.

    Article  Google Scholar 

  2. Berthelsen, A. (1998), The Tornquist Zone northwest of the Carpathians: An intraplate pseudosuture, GFF 120, 2, 223–230, DOI: 10.1080/11035899801202223.

    Article  Google Scholar 

  3. Beyreuther, M., R. Barsch, L. Krischer, T. Megies, Y. Behr, and J. Wassermann (2010), ObsPy: A Python toolbox for seismology, Seismol. Res. Lett. 81, 3, 530–533, DOI: 10.1785/gssrl.81.3.530.

    Article  Google Scholar 

  4. Bogdanova, S., R. Gorbatschev, M. Grad, T. Janik, A. Guterch, E. Kozlovskaya, G. Motuza, G. Skridlaite, V. Starostenko, L. Taran, and Eurobridge and Polonaise Working Groups (2006), EUROBRIDGE: new insight into the geodynamic evolution of the East European Craton, Geol. Soc. London Mem. 32, 599–625, DOI: 10.1144/GSL.MEM.2006.032.01.36.

    Article  Google Scholar 

  5. Bruneton, M., H.A. Pedersen, R. Farra, N.T. Arndt, P. Vacher, U. Achauer, A. Alinaghi, J. Ansorge, G. Bock, W. Friedrich, M. Grad, A. Guterch, P. S.E. Hjelt, T.L. Hyvonen, J.P. Ikonen, E. Kissling, K. Komminaho, A. Korja, E. Kozlovskaya, M.V. Nevsky, H. Paulssen, N.I. Pavlenkova, J. Plomerova, T. Raita, O.Y. Riznichenko, R.G. Roberts, S. Sandoval, I.A. Sanina, N.V. Sharov, Z.H. J. Tiikkainen, E. Wielandt, K. Wylegalla, J. Yliniemi, and Y.G. Yurov (2004), Complex lithospheric structure under the central Baltic Shield from surface wave tomography, J. Geophys. Res. 109, B10, B10303, DOI: 10.1029/2003JB 002947.

    Article  Google Scholar 

  6. Cotte, N., H.A. Pedersen, and Tor Working Group (2002), Sharp contrast in lithospheric structure across the Sorgenfrei–Tornquist Zone as inferred by Rayleigh wave analysis of TOR1 project data, Tectonophysics 360, 1-4, 75–88, DOI: 10.1016/S0040-1951(02)00348-7.

    Article  Google Scholar 

  7. Domański, B.M. (2007), Source parameters of the 2004 Kaliningrad earthquakes, Acta Geophys. 55, 3, 267–287, DOI: 10.2478/s11600-007-0021-7.

    Google Scholar 

  8. Duda, S.J., J. Saul, and M. Grad (1996), The influence of near-source and nearreceiver structure on the spectrum of P waves from nuclear explosions, Acta Geophys. Pol. 44, 1, 1–18.

    Google Scholar 

  9. Eaton, D.W., F. Darbyshire, R.L. Evans, H. Grütter, A.G. X. Yuan (2009), The elusive lithosphere-asthenosphere boundary (LAB) beneath cratons, Lithos 109, 1-2,, DOI: 10.1016/j.lithos.2008.05.009.

  10. Fasthoff, S., and L. Guo (2001), On spectral seismograms–3D display of seismogram, CT Theor. Appl. 10, 3, 47–51.

    Google Scholar 

  11. Gossler, J., and R. Kind (1996), Seismic evidence for very deep roots of continents, Earth Planet. Sci. Lett. 138, 1-4, 1–13, DOI: 10.1016/0012-821X(95)00215-X.

    Article  Google Scholar 

  12. Grabowska, T., G. Bojdys, M. Bielik, and K. Csicsay (2011), Density and magnetic models of the lithosphere along CELEBRATION 2000 profile CEL01, Acta Geophys. 59, 3, 526–560, DOI: 10.2478/s11600-011-0007-3.

    Article  Google Scholar 

  13. Grad, M. (1986), Seismic P-wave velocities of the East European Platform in Poland, Acta Geophys. Pol. 34, 1, 21–29.

    Google Scholar 

  14. Grad, M., and M. Polkowski (2012), Seismic wave velocities in the sedimentary cover of Poland: Borehole data compilation, Acta Geophys. 60, 4, 985–1006, DOI: 10.2478/s11600-012-0022-z.

    Article  Google Scholar 

  15. Grad, M., G.R. Keller, H. Thybo, A. Guterch, and POLONAISE Working Group (2002), Lower lithospheric structure beneath the Trans-European Suture Zone from POLONAISE’97 seismic profiles, Tectonophysics 360, 1–4, 153–168, DOI: 10.1016/S0040-1951(02)00350-5.

    Article  Google Scholar 

  16. Grad, M., S.L. Jensen, G.R. Keller, A. Guterch, H. Thybo, T. Janik, T. Tiira, J. Yliniemi, U. Luosto, G. Motuza, V. W. Czuba, E. Gaczyński, P. Środa, K.C. Miller, M. Wilde-Piórko, K. Komminaho, J. Jacyna, and L. Korabliova (2003), Crustal structure of the Trans-European suture zone region along POLONAISE’97 seismic profile P4, J. Geophys. Res. 108, B11, 2541, DOI: 10.1029/2003JB002426.

    Article  Google Scholar 

  17. Grad, M., T. Tiira, and ESC Working Group (2009), The Moho depth map of the European Plate, Geophys. J. Int. 176, 1, 279–292, DOI: 10.1111/j.1365-246X.2008.03919.x.

    Article  Google Scholar 

  18. Guterch, A., and M. Grad (2006), Lithospheric structure of the TESZ in Poland based on modern seismic experiments, Geol. Quart. 50, 1, 23–32.

    Google Scholar 

  19. Jiang, M., S. Zhou, E. Sandvol, X. Chen, X. Liang, Y.J. Chen, and W. Fan (2011), 3-D lithospheric structure beneath southern Tibet from Rayleigh-wave tomography with a 2-D seismic array, Geophys. J. Int. 185, 2, 593–608, DOI: 10.1111/j.1365-246X.2011.04979.x.

    Article  Google Scholar 

  20. Jóźwiak, W. (2013), Electromagnetic study of lithospheric structure in the marginal zone of East European Craton in NW Poland, Acta Geophys. 61, 5, 1101–1129, DOI: 10.2478/s11600-013-0127-z.

    Google Scholar 

  21. Kennett, B.L.N., and E.R. Engdahl (1991), Traveltimes for global earthquake location and phase identification, Geophys. J. Int. 105, 2, 429–465, DOI: 10.1111/j.1365-246X.1991.tb06724.x.

    Article  Google Scholar 

  22. Kennett, B.L.N, and R.D. van der Hilst (1996), Using a synthetic continental array to study the Earth’s interior, J. Phys. Earth 44, 6, 669–674, DOI: 10.4294/jpe1952.44.669.

    Article  Google Scholar 

  23. Kozlovskaya, E., G. Kosarev, I. O. I. Sanina (2008), Structure and composition of the crust and upper mantle of the Archean–Proterozoic boundary in the Fennoscandian shield obtained by joint inversion of receiver function and surface wave phase velocity of recording of the SVEKALAPKO array, Geophys. J. Int. 175, 1, 135–152, DOI: 10.1111/j.1365-246X.2008.03876.x.

    Article  Google Scholar 

  24. Królikowski, C., and Z. Petecki (1997), Crustal structure at the Trans-European Suture Zone in northwest Poland based on the gravity data, Geol. Mag. 134, 5, 661–667, DOI: 10.1017/S0016756897007395.

    Article  Google Scholar 

  25. Krysiński, L., M. Grad, and POLONAISE Working Group (2000), POLONAISE’97–Seismic and gravimetric modelling of the crustal structure in the Polish basin, Phys. Chem. Earth A 25, 4, 355–363, DOI: 10.1016/S1464-1895(00) 00057-0.

    Article  Google Scholar 

  26. Lizurek, G., B. Plesiewicz, P. Wiejacz, J. Wiszniowski, and J. Trojanowski (2013), Seismic event near Jarocin (Poland), Acta Geophys. 61, 1, 26–36, DOI: 10.2478/s11600-012-0052-6.

    Article  Google Scholar 

  27. Majdański, M. (2012), The structure of the crust in TESZ area by kriging interpolation, Acta Geophys. 60, 1, 59–75, DOI: 10.2478/s11600-011-0058-5.

    Google Scholar 

  28. Majorowicz, J.A., V. Čermak, J. Šafanda, P. Krzywiec, M. Wróblewska, A. Guterch, and M. Grad (2003), Heat flow models across the Trans-European Suture Zone in the area of the POLONAISE’97 seismic experiment, Phys. Chem. Earth 28, 9-11, 375–391, DOI: 10.1016/S1474-7065(03)00059-7.

    Article  Google Scholar 

  29. Malinowski, M. (2013), Models of the Earth’s crust from controlled-source seismology–Where we stand and where we go? Acta Geophys. 61, 6, 1437–1456, DOI: 10.2478/s11600-013-0156-7.

    Article  Google Scholar 

  30. McNamara, D.E., and R.P. Buland (2004), Ambient noise levels in the continental United States, Bull. Seismol. Soc. Am. 94, 4, 1517–1527, DOI: 10.1785/012003001.

    Article  Google Scholar 

  31. Megies, T., M. Beyreuther, R. Barsch, L. Krischer, and J. Wassermann (2011), ObsPy–What can it do for data centers and observatories? Ann. Geophys. 54, 1, 47–58, DOI: 10.4401/ag-4838.

    Google Scholar 

  32. Meissner, R. (1986), The Continental Crust–A Geophysical Approach, International Geophysics Series, Vol. 34, Academic Press Inc., Orlando, 426 pp.

    Google Scholar 

  33. Młynarski, S. (1984), The structure of deep bedrock in Poland on the basis of refraction results, Publs. Inst. Geophys. Pol. Acad. Sci. A-13, 160, 87–100.

    Google Scholar 

  34. Pagaczewski, J. (1972), Catalogue of earthquakes in Poland in 1000-1970 years, Publs. Inst. Geophys. Pol. Acad. Sci. 51, 3–36.

    Google Scholar 

  35. Pasyanos, M.E. (2010), Lithospheric thickness modeled from long-period surface wave dispersion, Tectonophysics 481, 1-4, 38–50, DOI: 10.1016/j.tecto. 2009.02.023.

    Article  Google Scholar 

  36. Peterson, J. (1993), Observation and modeling of seismic background noise, U.S. Dept. of Interior, Geological Survey, Open-file Rep. 93-322, 95 pp.

    Google Scholar 

  37. Pharaoh, T.C., R.W. England, J. Verniers, and A. Żelaźniewicz (1997), Introduction: geological and geophysical studies in the Trans-European Suture Zone, Geol. Mag. 134, 5, 585–590, DOI: 10.1017/S0016756897007619.

    Article  Google Scholar 

  38. Pożaryski, W., W. Brochwicz-Lewiński, and H. Tomczyk (1982), Sur la caractére hétérochronique de la Ligne Teisseyre-Tornquist, entre Europe centrale et orientale, C.R. Acad. Sci. Paris II Tect. 295, 691–696 (in French).

    Google Scholar 

  39. Romanowicz, B. (2009), The thickness of tectonic plates, Science 324, 5926, 474–476, DOI: 10.1126/science.1172879.

    Article  Google Scholar 

  40. Sandoval, S., E. Kissling, J. Ansorge, and the SVEKALAPKO Seismic Tomography Working Group (2004), High-resolution body wave tomography beneath the SVEKALAPKO array–II. Anomalous upper mantle structure beneath the central Baltic Shield, Geophys. J. Int. 157, 1, 200–214, DOI: 10.1111/j.1365-246X.2004.02131.x.

    Article  Google Scholar 

  41. Schweitzer, J., J. Fyen, S. Mykkeltveit, S.J. Gibbons, M. Pirlii, D. Kühn, and T. Kværna (2012), Seismic arrays. In: P. Bormann (ed.), New Manual of Seismological Observatory Practice 2 (NMSOP-2), Deutsches GeoForschungsZentrum, Potsdam, 1–80, DOI: 10.2312/GFZ.NMSOP-2_ch9.

    Google Scholar 

  42. Shearer, P.M., C.A. Rychert, and Q. Liu (2011), On the visibility of the inner-core shear wave phase PKJKP at long periods, Geophys. J. Int. 185, 3, 1379–1383, DOI: 10.1111/j.1365-246X.2011.05011.x.

    Article  Google Scholar 

  43. Skorupa, J. (1974), Seismic velocity map of Poland 1:500 000, Wyd. Geol., Warszawa.

    Google Scholar 

  44. Trojanowski, J., and M. Wilde-Piórko (2012), S-velocity structure beneath the Bohemian Massif from Monte Carlo inversion of seismic receiver function, Acta Geophys. 60, 1, 76–91, DOI: 10.2478/s11600-011-0047-8.

    Article  Google Scholar 

  45. Wessel, P., and W.H.F. Smith (1995), The Generic Mapping Tools GMT Version 3, Technical reference and cookbook, School of Ocean and Earth Science and Technology, University of Hawaii, Manoa, NOAA.

    Google Scholar 

  46. Wiejacz, P., and W. Dębski (2009), Podhale, Poland, earthquake of November 30, 2004, Acta Geophys. 57, 2, 346–366, DOI: 10.2478/s11600-009-0007-8.

    Article  Google Scholar 

  47. Wiejacz, P., and Ł. Rudziński (2010), Seismic event of January 22, 2010 near Bełchatów, Poland, Acta Geophys. 58, 6, 988–994, DOI: 10.2478/s11600-010-0030-9.

    Article  Google Scholar 

  48. Wilde-Piórko, M., M. Świeczak, M. Grad, and M. Majdański (2010), Integrated seismic model of the crust and upper mantle of the Trans-European Suture zone between the Precambrian craton and Phanerozoic terranes in Central Europe, Tectonophysics 481, 1-4, 108–115, DOI: 10.1016/j.tecto.2009.05. 002.

    Article  Google Scholar 

  49. Wilde-Piórko, M., S.J. Duda, and M. Grad (2011), Frequency analysis of the 2004 Sumatra-Andaman earthquake using spectral seismograms, Acta Geophys. 59, 3, 483–501, DOI: 10.2478/s11600-011-0010-8.

    Article  Google Scholar 

  50. Wiszniowski, J., B.M. Plesiewicz, and J. Trojanowski (2014), Application of real time recurrent neural network for detection of small natural earthquakes in Poland, Acta Geophys. 62, 3, 469–485, DOI: 10.2478/s11600-013-0140-2.

    Article  Google Scholar 

  51. Ziegler, P.A. (1990), Geological Atlas of Western and Central Europe, 2nd ed., Shell Int. Petrol. Maatschappij, Hague, Geological Society Publ. House, London.

    Google Scholar 

  52. Znosko, J. (1975), Tectonic units of Poland against the background of the tectonics of Europe, Geol. Inst. Anniversary Bull. 252, 61–75.

    Google Scholar 

  53. Znosko, J. (1979), Teisseyre-Tornquist tectonic zone: some interpretative implications of recent geological and geophysical investigations, Acta Geol. Pol. 29, 4, 365–382.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marek Grad.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Grad, M., Polkowski, M., Wilde-Piorko, M. et al. Passive Seismic Experiment “13 BB Star” in the Margin of the East European Craton, Northern Poland. Acta Geophys. 63, 352–373 (2015). https://doi.org/10.1515/acgeo-2015-0006

Download citation

Key words

  • East European craton
  • lithosphere
  • asthenosphere
  • seismic passive experiment
  • broadband seismology.