Advertisement

Acta Geophysica

, Volume 63, Issue 2, pp 352–373 | Cite as

Passive Seismic Experiment “13 BB Star” in the Margin of the East European Craton, Northern Poland

  • Marek Grad
  • Marcin Polkowski
  • Monika Wilde-Piorko
  • Jerzy Suchcicki
  • Tadeusz Arant
Open Access
Article

Abstract

The lithosphere-asthenosphere boundary (LAB) is investigated recently very effectively, mostly using seismic methods because of their deep penetration and relatively good resolution. The nature of LAB is still debated, particularly under “cold” Precambrian shields and platforms. Passive experiment “13 BB star” is dedicated to study deep structure of the Earth’s interior in the marginal zone of the East European craton in northern Poland. The seismic network consists of 13 broadband stations on the area of ca. 120 km in diameter. The network is located in the area of well-known sedimentary cover and crustal structure. Good records obtained till now, and expected during next 1-year long recording campaign, should yield images of detailed structure of the LAB, „410”, “?520”, and „660” km discontinuities, as well as mantle-core boundary and inner core.

Key words

East European craton lithosphere asthenosphere seismic passive experiment broadband seismology. 

References

  1. Bartzsch, S., S. Lebedev, and T. Meier (2011), Resolving the lithosphere-asthenosphere boundary with seismic Rayleigh waves, Geophys. J. Int. 186, 3, 1152–1164, DOI: 10.1111/j.1365-246X.2011.05096.x.CrossRefGoogle Scholar
  2. Berthelsen, A. (1998), The Tornquist Zone northwest of the Carpathians: An intraplate pseudosuture, GFF 120, 2, 223–230, DOI: 10.1080/11035899801202223.CrossRefGoogle Scholar
  3. Beyreuther, M., R. Barsch, L. Krischer, T. Megies, Y. Behr, and J. Wassermann (2010), ObsPy: A Python toolbox for seismology, Seismol. Res. Lett. 81, 3, 530–533, DOI: 10.1785/gssrl.81.3.530.CrossRefGoogle Scholar
  4. Bogdanova, S., R. Gorbatschev, M. Grad, T. Janik, A. Guterch, E. Kozlovskaya, G. Motuza, G. Skridlaite, V. Starostenko, L. Taran, and Eurobridge and Polonaise Working Groups (2006), EUROBRIDGE: new insight into the geodynamic evolution of the East European Craton, Geol. Soc. London Mem. 32, 599–625, DOI: 10.1144/GSL.MEM.2006.032.01.36.CrossRefGoogle Scholar
  5. Bruneton, M., H.A. Pedersen, R. Farra, N.T. Arndt, P. Vacher, U. Achauer, A. Alinaghi, J. Ansorge, G. Bock, W. Friedrich, M. Grad, A. Guterch, P. S.E. Hjelt, T.L. Hyvonen, J.P. Ikonen, E. Kissling, K. Komminaho, A. Korja, E. Kozlovskaya, M.V. Nevsky, H. Paulssen, N.I. Pavlenkova, J. Plomerova, T. Raita, O.Y. Riznichenko, R.G. Roberts, S. Sandoval, I.A. Sanina, N.V. Sharov, Z.H. J. Tiikkainen, E. Wielandt, K. Wylegalla, J. Yliniemi, and Y.G. Yurov (2004), Complex lithospheric structure under the central Baltic Shield from surface wave tomography, J. Geophys. Res. 109, B10, B10303, DOI: 10.1029/2003JB 002947.CrossRefGoogle Scholar
  6. Cotte, N., H.A. Pedersen, and Tor Working Group (2002), Sharp contrast in lithospheric structure across the Sorgenfrei–Tornquist Zone as inferred by Rayleigh wave analysis of TOR1 project data, Tectonophysics 360, 1-4, 75–88, DOI: 10.1016/S0040-1951(02)00348-7.CrossRefGoogle Scholar
  7. Domański, B.M. (2007), Source parameters of the 2004 Kaliningrad earthquakes, Acta Geophys. 55, 3, 267–287, DOI: 10.2478/s11600-007-0021-7.Google Scholar
  8. Duda, S.J., J. Saul, and M. Grad (1996), The influence of near-source and nearreceiver structure on the spectrum of P waves from nuclear explosions, Acta Geophys. Pol. 44, 1, 1–18.Google Scholar
  9. Eaton, D.W., F. Darbyshire, R.L. Evans, H. Grütter, A.G. X. Yuan (2009), The elusive lithosphere-asthenosphere boundary (LAB) beneath cratons, Lithos 109, 1-2,, DOI: 10.1016/j.lithos.2008.05.009.Google Scholar
  10. Fasthoff, S., and L. Guo (2001), On spectral seismograms–3D display of seismogram, CT Theor. Appl. 10, 3, 47–51.Google Scholar
  11. Gossler, J., and R. Kind (1996), Seismic evidence for very deep roots of continents, Earth Planet. Sci. Lett. 138, 1-4, 1–13, DOI: 10.1016/0012-821X(95)00215-X.CrossRefGoogle Scholar
  12. Grabowska, T., G. Bojdys, M. Bielik, and K. Csicsay (2011), Density and magnetic models of the lithosphere along CELEBRATION 2000 profile CEL01, Acta Geophys. 59, 3, 526–560, DOI: 10.2478/s11600-011-0007-3.CrossRefGoogle Scholar
  13. Grad, M. (1986), Seismic P-wave velocities of the East European Platform in Poland, Acta Geophys. Pol. 34, 1, 21–29.Google Scholar
  14. Grad, M., and M. Polkowski (2012), Seismic wave velocities in the sedimentary cover of Poland: Borehole data compilation, Acta Geophys. 60, 4, 985–1006, DOI: 10.2478/s11600-012-0022-z.CrossRefGoogle Scholar
  15. Grad, M., G.R. Keller, H. Thybo, A. Guterch, and POLONAISE Working Group (2002), Lower lithospheric structure beneath the Trans-European Suture Zone from POLONAISE’97 seismic profiles, Tectonophysics 360, 1–4, 153–168, DOI: 10.1016/S0040-1951(02)00350-5.CrossRefGoogle Scholar
  16. Grad, M., S.L. Jensen, G.R. Keller, A. Guterch, H. Thybo, T. Janik, T. Tiira, J. Yliniemi, U. Luosto, G. Motuza, V. W. Czuba, E. Gaczyński, P. Środa, K.C. Miller, M. Wilde-Piórko, K. Komminaho, J. Jacyna, and L. Korabliova (2003), Crustal structure of the Trans-European suture zone region along POLONAISE’97 seismic profile P4, J. Geophys. Res. 108, B11, 2541, DOI: 10.1029/2003JB002426.CrossRefGoogle Scholar
  17. Grad, M., T. Tiira, and ESC Working Group (2009), The Moho depth map of the European Plate, Geophys. J. Int. 176, 1, 279–292, DOI: 10.1111/j.1365-246X.2008.03919.x.CrossRefGoogle Scholar
  18. Guterch, A., and M. Grad (2006), Lithospheric structure of the TESZ in Poland based on modern seismic experiments, Geol. Quart. 50, 1, 23–32.Google Scholar
  19. Jiang, M., S. Zhou, E. Sandvol, X. Chen, X. Liang, Y.J. Chen, and W. Fan (2011), 3-D lithospheric structure beneath southern Tibet from Rayleigh-wave tomography with a 2-D seismic array, Geophys. J. Int. 185, 2, 593–608, DOI: 10.1111/j.1365-246X.2011.04979.x.CrossRefGoogle Scholar
  20. Jóźwiak, W. (2013), Electromagnetic study of lithospheric structure in the marginal zone of East European Craton in NW Poland, Acta Geophys. 61, 5, 1101–1129, DOI: 10.2478/s11600-013-0127-z.Google Scholar
  21. Kennett, B.L.N., and E.R. Engdahl (1991), Traveltimes for global earthquake location and phase identification, Geophys. J. Int. 105, 2, 429–465, DOI: 10.1111/j.1365-246X.1991.tb06724.x.CrossRefGoogle Scholar
  22. Kennett, B.L.N, and R.D. van der Hilst (1996), Using a synthetic continental array to study the Earth’s interior, J. Phys. Earth 44, 6, 669–674, DOI: 10.4294/jpe1952.44.669.CrossRefGoogle Scholar
  23. Kozlovskaya, E., G. Kosarev, I. O. I. Sanina (2008), Structure and composition of the crust and upper mantle of the Archean–Proterozoic boundary in the Fennoscandian shield obtained by joint inversion of receiver function and surface wave phase velocity of recording of the SVEKALAPKO array, Geophys. J. Int. 175, 1, 135–152, DOI: 10.1111/j.1365-246X.2008.03876.x.CrossRefGoogle Scholar
  24. Królikowski, C., and Z. Petecki (1997), Crustal structure at the Trans-European Suture Zone in northwest Poland based on the gravity data, Geol. Mag. 134, 5, 661–667, DOI: 10.1017/S0016756897007395.CrossRefGoogle Scholar
  25. Krysiński, L., M. Grad, and POLONAISE Working Group (2000), POLONAISE’97–Seismic and gravimetric modelling of the crustal structure in the Polish basin, Phys. Chem. Earth A 25, 4, 355–363, DOI: 10.1016/S1464-1895(00) 00057-0.CrossRefGoogle Scholar
  26. Lizurek, G., B. Plesiewicz, P. Wiejacz, J. Wiszniowski, and J. Trojanowski (2013), Seismic event near Jarocin (Poland), Acta Geophys. 61, 1, 26–36, DOI: 10.2478/s11600-012-0052-6.CrossRefGoogle Scholar
  27. Majdański, M. (2012), The structure of the crust in TESZ area by kriging interpolation, Acta Geophys. 60, 1, 59–75, DOI: 10.2478/s11600-011-0058-5.Google Scholar
  28. Majorowicz, J.A., V. Čermak, J. Šafanda, P. Krzywiec, M. Wróblewska, A. Guterch, and M. Grad (2003), Heat flow models across the Trans-European Suture Zone in the area of the POLONAISE’97 seismic experiment, Phys. Chem. Earth 28, 9-11, 375–391, DOI: 10.1016/S1474-7065(03)00059-7.CrossRefGoogle Scholar
  29. Malinowski, M. (2013), Models of the Earth’s crust from controlled-source seismology–Where we stand and where we go? Acta Geophys. 61, 6, 1437–1456, DOI: 10.2478/s11600-013-0156-7.CrossRefGoogle Scholar
  30. McNamara, D.E., and R.P. Buland (2004), Ambient noise levels in the continental United States, Bull. Seismol. Soc. Am. 94, 4, 1517–1527, DOI: 10.1785/012003001.CrossRefGoogle Scholar
  31. Megies, T., M. Beyreuther, R. Barsch, L. Krischer, and J. Wassermann (2011), ObsPy–What can it do for data centers and observatories? Ann. Geophys. 54, 1, 47–58, DOI: 10.4401/ag-4838.Google Scholar
  32. Meissner, R. (1986), The Continental Crust–A Geophysical Approach, International Geophysics Series, Vol. 34, Academic Press Inc., Orlando, 426 pp.Google Scholar
  33. Młynarski, S. (1984), The structure of deep bedrock in Poland on the basis of refraction results, Publs. Inst. Geophys. Pol. Acad. Sci. A-13, 160, 87–100.Google Scholar
  34. Pagaczewski, J. (1972), Catalogue of earthquakes in Poland in 1000-1970 years, Publs. Inst. Geophys. Pol. Acad. Sci. 51, 3–36.Google Scholar
  35. Pasyanos, M.E. (2010), Lithospheric thickness modeled from long-period surface wave dispersion, Tectonophysics 481, 1-4, 38–50, DOI: 10.1016/j.tecto. 2009.02.023.CrossRefGoogle Scholar
  36. Peterson, J. (1993), Observation and modeling of seismic background noise, U.S. Dept. of Interior, Geological Survey, Open-file Rep. 93-322, 95 pp.Google Scholar
  37. Pharaoh, T.C., R.W. England, J. Verniers, and A. Żelaźniewicz (1997), Introduction: geological and geophysical studies in the Trans-European Suture Zone, Geol. Mag. 134, 5, 585–590, DOI: 10.1017/S0016756897007619.CrossRefGoogle Scholar
  38. Pożaryski, W., W. Brochwicz-Lewiński, and H. Tomczyk (1982), Sur la caractére hétérochronique de la Ligne Teisseyre-Tornquist, entre Europe centrale et orientale, C.R. Acad. Sci. Paris II Tect. 295, 691–696 (in French).Google Scholar
  39. Romanowicz, B. (2009), The thickness of tectonic plates, Science 324, 5926, 474–476, DOI: 10.1126/science.1172879.CrossRefGoogle Scholar
  40. Sandoval, S., E. Kissling, J. Ansorge, and the SVEKALAPKO Seismic Tomography Working Group (2004), High-resolution body wave tomography beneath the SVEKALAPKO array–II. Anomalous upper mantle structure beneath the central Baltic Shield, Geophys. J. Int. 157, 1, 200–214, DOI: 10.1111/j.1365-246X.2004.02131.x.CrossRefGoogle Scholar
  41. Schweitzer, J., J. Fyen, S. Mykkeltveit, S.J. Gibbons, M. Pirlii, D. Kühn, and T. Kværna (2012), Seismic arrays. In: P. Bormann (ed.), New Manual of Seismological Observatory Practice 2 (NMSOP-2), Deutsches GeoForschungsZentrum, Potsdam, 1–80, DOI: 10.2312/GFZ.NMSOP-2_ch9.Google Scholar
  42. Shearer, P.M., C.A. Rychert, and Q. Liu (2011), On the visibility of the inner-core shear wave phase PKJKP at long periods, Geophys. J. Int. 185, 3, 1379–1383, DOI: 10.1111/j.1365-246X.2011.05011.x.CrossRefGoogle Scholar
  43. Skorupa, J. (1974), Seismic velocity map of Poland 1:500 000, Wyd. Geol., Warszawa.Google Scholar
  44. Trojanowski, J., and M. Wilde-Piórko (2012), S-velocity structure beneath the Bohemian Massif from Monte Carlo inversion of seismic receiver function, Acta Geophys. 60, 1, 76–91, DOI: 10.2478/s11600-011-0047-8.CrossRefGoogle Scholar
  45. Wessel, P., and W.H.F. Smith (1995), The Generic Mapping Tools GMT Version 3, Technical reference and cookbook, School of Ocean and Earth Science and Technology, University of Hawaii, Manoa, NOAA.Google Scholar
  46. Wiejacz, P., and W. Dębski (2009), Podhale, Poland, earthquake of November 30, 2004, Acta Geophys. 57, 2, 346–366, DOI: 10.2478/s11600-009-0007-8.CrossRefGoogle Scholar
  47. Wiejacz, P., and Ł. Rudziński (2010), Seismic event of January 22, 2010 near Bełchatów, Poland, Acta Geophys. 58, 6, 988–994, DOI: 10.2478/s11600-010-0030-9.CrossRefGoogle Scholar
  48. Wilde-Piórko, M., M. Świeczak, M. Grad, and M. Majdański (2010), Integrated seismic model of the crust and upper mantle of the Trans-European Suture zone between the Precambrian craton and Phanerozoic terranes in Central Europe, Tectonophysics 481, 1-4, 108–115, DOI: 10.1016/j.tecto.2009.05. 002.CrossRefGoogle Scholar
  49. Wilde-Piórko, M., S.J. Duda, and M. Grad (2011), Frequency analysis of the 2004 Sumatra-Andaman earthquake using spectral seismograms, Acta Geophys. 59, 3, 483–501, DOI: 10.2478/s11600-011-0010-8.CrossRefGoogle Scholar
  50. Wiszniowski, J., B.M. Plesiewicz, and J. Trojanowski (2014), Application of real time recurrent neural network for detection of small natural earthquakes in Poland, Acta Geophys. 62, 3, 469–485, DOI: 10.2478/s11600-013-0140-2.CrossRefGoogle Scholar
  51. Ziegler, P.A. (1990), Geological Atlas of Western and Central Europe, 2nd ed., Shell Int. Petrol. Maatschappij, Hague, Geological Society Publ. House, London.Google Scholar
  52. Znosko, J. (1975), Tectonic units of Poland against the background of the tectonics of Europe, Geol. Inst. Anniversary Bull. 252, 61–75.Google Scholar
  53. Znosko, J. (1979), Teisseyre-Tornquist tectonic zone: some interpretative implications of recent geological and geophysical investigations, Acta Geol. Pol. 29, 4, 365–382.Google Scholar

Copyright information

© Grad et al. 2015

Authors and Affiliations

  • Marek Grad
    • 1
  • Marcin Polkowski
    • 1
  • Monika Wilde-Piorko
    • 1
  • Jerzy Suchcicki
    • 2
  • Tadeusz Arant
    • 2
  1. 1.Institute of Geophysics, Faculty of PhysicsUniversity of WarsawWarsawPoland
  2. 2.Institute of GeophysicsPolish Academy of SciencesWarsawPoland

Personalised recommendations