Advertisement

Biologia

, Volume 72, Issue 7, pp 814–818 | Cite as

Cockroach forewing area and venation variabilities relate

  • Róbert OružinskýEmail author
  • Peter Vršanský
Short Communication Section Zoology
  • 3 Downloads

Abstract

Cockroaches are among the very few organisms allowing study of quantitative changes of intraspecific variability over time. The variability studied here within three Mesozoic and one living species shown independence (R2 = 0.003–0.093) of forewing areas (CVs 10.96–18.02) on number of veins of corresponding individuals (CVs = 6.83–7.80). In contrast, the average number of veins among studied species correlates with the average forewing area (R2 = 0.986), which is not reflected in the variability trends. Study of wing areas and their variability as an informative source of data should thus be included in systematic descriptions of both living and extinct species.

Key words

fossil cockroaches variability Jurassic Cretaceous Ectobius sylvestris 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bai M., Beutel R.G., Klass K.-D., Zhang W.W., Yang X.K. & Wipfler B. 2016. ° Alienoptera - a new insect order in the roach - mantodean twilight zone. Gondwana Res. 39: 319–326. DOI:  https://doi.org/10.1016/j.gr.2016.02.002CrossRefGoogle Scholar
  2. Barna P. 2014. Low diversity cockroach assemblage from Cher-novskie Kopi in Russia confirms wing deformities in insects at the Jurassic/Cretaceous boundary. Biologia 69 (5): 651–675. DOI:  https://doi.org/10.2478/sll756-014-0349-9CrossRefGoogle Scholar
  3. Lee S.-W. 2016. Taxonomic diversity of cockroach assemblages (Blattaria, Insecta) of the Aptian Crato Formation (Cretaceous, NE Brazil) Geol. Carpath. 67 (5): 433–450. DOI:  https://doi.org/10.1515/geoca-2016-0027CrossRefGoogle Scholar
  4. Liang J.H., Vršanský P. & Ren D. 2012. Variability and symmetry of a Jurassic nocturnal predatory cockroach (Blattida: Raphidiomimidae). Rev. Mex. Cienc. Geol. 29 (2): 41–421.Google Scholar
  5. Liang J.H., Vršanský P., Ren D. & Shih C. 2009. A new Jurassic carnivorous cockroach (Insecta, Blattaria, Raphidiomimidae) from the Inner Mongolia in China. Zootaxa 1974: 17–30. DOI:  https://doi.org/10.5281/zenodo.185099Google Scholar
  6. Ross A. 2012. Testing decreasing variability of cockroach fore-wings through time using four Recent species: Blattella germanica, Polyphaga aegyptiaca, Shelfordella lateralis and Blaberus craniifer, with implications for the study of fossil cockroach forewings. Insect Sci. 19 (2): 129–142. DOI:  https://doi.org/10.1111/j.1744-7917.2011.01465.xCrossRefGoogle Scholar
  7. Schneider J. 1977. Zur Variabilität der Flügel paläozoischer Blattodea (Insecta), Teil I. Freiberger Forschungshefte C- Geowis-senschaften, Paläontologie 326: 87–105.Google Scholar
  8. Schneider J. 1978a. Zur Variabilität der Flügel paläozoischer Blattodea (Insecta), Teil II. Freiberger Forschungshefte C - Geowissenschaften, Paläontologie 326: 21–39.Google Scholar
  9. Schneider J. 1978b. Revision der Poroblattinidae (Insecta, Blattodea) des europäischen und nordamerikanischen Oberkarbon und Perm. Freiberger Forschungshefte C - Geowissenschaften, Paläontologie 342: 55–66.Google Scholar
  10. Schneider J. 1980a. Zur Entomofauna des Jungpaläozoikums der Boskovicer Furche (CSSR), Teil I: Mylacridae (Insecta, Blattodea). Freiberger Forschungshefte C - Geowissenschaften, Paläontologie 357: 43–55.Google Scholar
  11. Schneider J. 1980b. Zur Taxonomie der jungpaläoyoischen Ne-orthroblattinidae (Insecta, Blattodea). Freiberger Forschungshefte C - Geowissenschaften, Paläontologie 348: 31–39.Google Scholar
  12. Schneider J. 1983. Die Blattodea (Insecta) des Paläozoikums, Teil 1. Systematik, Ökologie und Biostratigraphie. Freiberger Forschungshefte C - Geowissenschaften, Paläontologie 382: 107–146.Google Scholar
  13. Schneider J. 1984. Die Blattodea (Insecta) des Paläozoikums, Teil II: Morphogenese der Flügelstrukturen und Phylogenie. Freiberger Forschungshefte C - Geowissenschaften, Paläontologie 391: 5–34. ISSN: 0071-9404Google Scholar
  14. Sendi H. & Azar D. 2017. New aposematic and presumably repellent bark cockroach from Lebanese amber. Cretaceous Res. 72: 13–17. DOI:  https://doi.org/10.1016/j.cretres.2016.11.013CrossRefGoogle Scholar
  15. Smidová L. & Lei X. 2017. The earliest amber-recorded type cockroach family was aposematic (Blattaria: Blattidae). Cretaceous Res. 72: 189–199. DOI:  https://doi.org/10.1016/j.cretres.2017.01.008CrossRefGoogle Scholar
  16. Vidlicka E. 2001. Blattaria - sváby, Mantodea - modlivky (Insecta: Orthopteroidea). Fauna Slovenska I. Veda, vyda-vatel’stvo SAV, Bratislava, 171pp. ISBN: 80-224-0640-6.Google Scholar
  17. Vishniakova, V.N. 1964. Additional characteristics of blood vessels in forewings of a new Upper Jurassic cockroach. Paleontol. J. 1: 82–87. [In Russian]Google Scholar
  18. Vishniakova V.N. 1998. Cockroaches (Insecta, Blattodea) from the Triassic of the Madygen, Central Asia. Paleontol. J. 32 (5): 69–76. [In Russian]Google Scholar
  19. Vrsansky P. 1997. Piniblattella gen. nov. - the most ancient genus of the family Blattellidae (Blattodea) from the Lower Cretaceous of Siberia. Entomol. Probl. 28 (1): 67–79.Google Scholar
  20. Vršanský, P. 2000. Decreasing variability - from the Carboniferous to the Present! (Validated on Independent Lineages of Blattaria). Paleontol. J. 34 (Suppl. 3): 374–379.Google Scholar
  21. Vršanský P. 2003. Unique assemblage of Dictyoptera (Insecta- Blattaria, Mantodea, Isoptera) from the Lower Cretaceous of Bon Tsagaan Nuur in Mongolia. Entomol. Probl. 33: 119–151.Google Scholar
  22. Vršanský P. 2005. Mass mutations of insects at the Jurassic/Cretaceous boundary? Geol. Carpath. 56 (6): 473–781.Google Scholar
  23. Vršanský P. & Bechly G. 2015. New predatory cockroaches (Insecta: Blattaria: Manipulatoridae fam.n.) from the Upper Cretaceous Myanmar amber. Geol. Carpath. 66 (2): 133–139.CrossRefGoogle Scholar
  24. Vršanský P., Liang J.H. & Ren D. 2009. Advanced morphology and behaviour of extinct earwig-like cockroaches (Blattida: Fuziidae). Geol. Carpath. 60: 449–462.CrossRefGoogle Scholar
  25. Vršanský P., Oružinský R., Barna P., Vidlička E., & Labandeira C.C. 2014. Native Ectobius (Blattaria: Ectobiidae) From the Early Eocene Green River Formation of Colorado and Its Reintroduction to North America 49. Million Years Later. Ann. Entomol. Soc. Am. 107 (1): 28–36. DOI:  https://doi.org/10.1603/AN13042CrossRefGoogle Scholar
  26. Vršanský P.V.V., Šmídová L., Valaška D., Barna P., Vidlička L., Takáč P., Pavlik L., Kúdelová T., Karim T.S., Zelagin D. & Smith D. 2016. Origin of origami cockroach reveals long-lasting (11 Ma) phenotype instability following viviparity. Sci. Nat. 103 (9-10): 78. DOI:  https://doi.org/10.1007/s00114-016-1398-4.CrossRefGoogle Scholar
  27. Vršanský P., Vishniakova V.N. & Rasnitsyn A.P. 2002. Order Blattida Latreille, 1810. The cockroaches, pp. 263–270. In: Rasnitsyn A.P. & Quicke D.L.J. (eds), History of Insects, Kluwer Academic Publishers, Dodrecht, 516. pp. ISBN: 1-4020-0026-XGoogle Scholar
  28. Wang T.T., Liang J.H., Ren D. & Shi C. 2007a. New Mesozoic cockroaches (Blattaria: Blattulidae) from Jehol Biota of western Liaoning in China. Ann. Zool. 57 (3): 483–495.Google Scholar
  29. Wang T.T., Liang J.H. & Ren D. 2007b. Variability of Habroblat-tula drepanoides gen. et. sp nov (Insecta: Blattaria: Blattulidae) from the Yixian Formation in Liaoning, China. Zootaxa 1443: 17–27. DOI:  https://doi.org/10.5281/zenodo.176061CrossRefGoogle Scholar
  30. Webster M. 2007. A Cambrian peak in morphological variation within trilobite species. Science 317 (5837): 499–502. DOI:  https://doi.org/10.1126/science.1142964CrossRefGoogle Scholar
  31. Wei D.D. & Ren D. 2013. Completely preserved cockroaches of the family Mesoblattinidae from J/K Yixian Formation, China. Geol. Carpath. 64 (4): 291–304. DOI:  https://doi.org/10.2478/geoca-2013-0021CrossRefGoogle Scholar

Copyright information

© Slovak Academy of Sciences 2017

Authors and Affiliations

  1. 1.Earth Science InstituteSlovak Academy of SciencesBratislavaSlovakia
  2. 2.Institute of ZoologySlovak Academy of SciencesBratislavaSlovakia
  3. 3.Institute of Physics, Research Centre of Quantum InformaticsSlovak Academy of SciencesBratislavaSlovakia
  4. 4.Palaeontological InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations