Advertisement

Biologia

, Volume 72, Issue 7, pp 722–734 | Cite as

Effect of the Gabčíkovo Waterworks (Slovakia) on riparian floodplain forest ecosystems in the Danube inland delta: vegetation dynamics and trends

  • Mária Petrášová-ŠibíkováEmail author
  • Igor Matečný
  • Eva Uherčíková
  • Peter Pišút
  • Silvia Kubalová
  • Milan Valachović
  • Iva Hodálová
  • Pavol MereďaJr.
  • Sarah M. Bisbing
  • Jana Medvecká
Section Botany
  • 2 Downloads

Abstract

Human alteration of watercourses is global phenomenon that has had significant impacts on local ecosystems and the services they provide. Monitoring of abiotic and biotic changes is essential to mitigating long-lasting effects, and the 23-year dataset from the Gabčíkovo Waterworks provided a rare opportunity to assess the impact of groundwater regimes on vegetation. The main aim of this study was to describe the effect of the Gabčíkovo Waterworks on vegetation structure and species composition of the adjacent riparian floodplain forests over the past 23 years. The results are based on studies of three permanent monitoring plots (PMPs) located in the Danube inland delta — two outside (PMP 1 and 3) and one (PMP 2) fully under the influence of the artificial supply system. Our results demonstrate that the Danube inland delta was negatively affected by the Gabčíkovo construction, particularly for sites outside of the artificial supply system. There was a significant decrease in soil moisture and increase in nitrogen at both external PMPs (1 and 3). Alter soil conditions were accompanied by negative changes in plant species composition demonstrated by decreases in the number of typical floodplain forest species that are characteristic for the alliance Salicion albae and either number or cover of neophytes. These changes resulted in slow degradation of the riparian floodplain forests. Vegetation in the artificially-fed PMP 2 was the most stable in terms of the evaluated parameters, however even this site did still experience negative trends in some site characteristics, including soil moisture fluctuations and the number and cover of neophytes. The artificial supply system is not sufficiently replacing previous natural floods, but in some aspects it helped to decrease the negative effect of the Gabčíkovo Waterworks on softwood floodplain forests in the studied area.

Key words

dam dynamics long-term monitoring river soil moisture tree species 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11756_2017_7207722_MOESM1_ESM.pdf (73 kb)
Supplementary material, approximately 74.980KB.

References

  1. Adamec L., Husák Š., Janauer G.A. & Ot’ahel’ová H. 1993. Phytosociological and ecophysiological study of macrophytes in backwaters in the Danube river inundation area near Palkovičovo (Slovakia). Ekológia, Bratislava 12: 69–79.Google Scholar
  2. Bartolčič M. 1992. Vplyvy l’udskej činnosti na Dunaji. Iuxta Danubium 10: 5–9.Google Scholar
  3. Bonuš M. 1997. Na slovíčko o Dunaji. Daphne 4: 6–10.Google Scholar
  4. Borhidi A., Kevey B. & Lendvai G. 2012. Plant communities of Hungary. Akadémiai Kiadó, Budapest.Google Scholar
  5. Botková K. 2016. Invázne druhy v lužných lesoch a vhodné manažmentové opatrenia na ich reguláciu, pp. 71–75. In: Miklós L. & Diviaková A. (eds), Pôda a voda ako súčast’ integrovaného manažmentu životného prostredia. Technická univerzita vo Zvolene, Zvolen.Google Scholar
  6. Braun-Blanquet J. 1964. Pflanzensoziologie. Grundzüge der Vegetationskunde. Springer Verlag, Wien.Google Scholar
  7. Catford J.A. & Jansson R. 2014. Drowned, buried and carried away: effects of plant traits on the distribution of native and alien species in riparian ecosystems. New Phytol. 204: 19–36.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Catford J.A., Morris W.K., Vesk P.A., Gippel C.J. & Downes B.J. 2014. Species and environmental characteristics point to flow regulation and drought as drivers of riparian plant invasion. Divers. Distrib. 20: 1084–1096.CrossRefGoogle Scholar
  9. Cejka T. 2006. Use of terrestrial molluscs for bioindication of the impact of the Gabčíkovo hydraulic structures, pp. 127–131. In: Mucha I. & Lisický M.J. (eds), Slovak-Hungarian Environmental Monitoring on the Danube 1995–2005, Slovak section. Danube Monitoring Scientific Conference, 25–26 May 2006. Mosonmagyaróvár.Google Scholar
  10. Davis M.A., Grime J.P. & Thompson K. 2000. Fluctuating resources in plant communities: a general theory of invasibility. J. Ecol. 88: 528–534.CrossRefGoogle Scholar
  11. Ellenberg H. 1988. Vegetation Ecology of Central Europe. Cambridge University Press, Cambridge.Google Scholar
  12. Ellenberg H., Weber H.E., Dull R., Wirth V., Werner W. & Pauliβen D. 1992. Zeigerwerte von Pflanzen in Mitteleuropa. Ed. 2. Scripta Geobot. 18: 1–258.Google Scholar
  13. Ellis L.M., Crawford C.S. & Molles M.C. 2001. Influence of annual flooding on terrestrial arthropod assemblages of a Rio Grande riparian forest. Regul. River 17: 1–20.CrossRefGoogle Scholar
  14. Havlová M., Chytrý M. & Tichý L. 2004. Diversity of hay meadows in the Czech Republic: major types and environmental gradients. Phytocoenologia 34: 551–567.CrossRefGoogle Scholar
  15. Hennekens S.M. & Schaminée J.H. 2001. TURBOVEG, a comprehensive data base management system for vegetation data. J. Veget. Sci. 12: 589–591.CrossRefGoogle Scholar
  16. Holčík J., Basti I., Ertl M. & Vranovský M. 1981. Hydrobiology and ichthyology of the Czechoslovak Danube in relation to predicted changes after the construction of the Gabcíkovo-Nagymaros River Barrage System. Práce Laboratória Ry-bárstva a Hydrobiológie 3: 19–158.Google Scholar
  17. Horton J.L. & Clark J.L. 2001. Water table decline alters growth and survival of Salix gooddingii and Tamarix chinensis seedlings. Forest Ecol. Manag. 140: 239–247.CrossRefGoogle Scholar
  18. Husák Š. & Ot’ahel’ová H. 1991. Výskyt Schoenoplectus triqueter (L.) Palla na Podunajskej rovine (Slovensko). Biológia 46: 815–819.Google Scholar
  19. Chytrý M., Douda J., Roleček J., Sádlo J., Boublík K., Hédl R., Vítková M., Zelený D., Navrátilová J., Neuhäuslová Z., Petřík P., Kolbek J., Lososová Z., Šumberová K., Hrivnák R., Michalcová D., Žáková K., Danihelka J., Tichý L., Zouhar V & Kočí M. 2013. Vegetace České republiky 4. Lesní a křovinná vegetace. Academia, Praha.Google Scholar
  20. Chytry M., Maskell L.C., Pino J., Pyšek P., Vilà M., Font X. & Smart S.M. 2008. Habitat invasions by alien plants: a quantitative comparison among Mediterranean, subcontinental and oceanic regions of Europe. J. Appl. Ecol. 45: 448–458.CrossRefGoogle Scholar
  21. Chytrý M., Pyšek P., Tichý L., Knollová I. & Danihelka J. 2005. Invasions by alien plants in the Czech Republic: a quantitative assessment across habitats. Preslia 77: 339–354.Google Scholar
  22. Illyová M. & Matečný I. 2014. Ecological validity of river-floodplain system assessment by planktonic crustacean survey (Branchiata: Branchiopoda). Environ. Monit. Asses. 186: 4195–4208.CrossRefGoogle Scholar
  23. Jarolímek I. & Šibik J. (eds). 2008. Diagnostic, constant and dominant species of the higher vegetation units of Slovakia. Veda, Bratislava.Google Scholar
  24. Jarolímek I., Šibík J., Hegedüsová K., Janišová M., Kliment J., Kučera P., Májeková J., Michálková D., Sadloňová J., Šibíková I., Škodová L., Uhlířová J., Ujházy K., Ujházyová M., Valachovič M. & Zaliberová M. 2008. A list of vegetation units of Slovakia, pp. 295–329. In: Jarolímek I. & Šibík J. (eds), Diagnostic, constant and dominant species of the higher vegetation units of Slovakia. Veda, Bratislava.Google Scholar
  25. Jurko A. 1958. Pôdne ekologické pomery a lesné spoločenstvá Podunajskej nížiny. SAV, Bratislava.Google Scholar
  26. Käfer J. & Witte J.P.M. 2004. Cover-weighted averaging of indicator values in vegetation analyses. J. Veget. Sci. 15: 647–652.CrossRefGoogle Scholar
  27. Kopeć D., Ratajczyk N., Wolańska-Kamińska A., Walisch M. & Kruk A. 2014. Floodplain forest vegetation response to hydroengineering and climatic pressure — A five decade comparative analysis in the Bzura River valley (Central Poland). Forest Ecol. Manag. 314: 120–130.CrossRefGoogle Scholar
  28. Leyer I. 2005. Predicting plant species’ responses to river regulation: the role of water level fluctuations. J. Appl. Ecol. 42: 239–250.CrossRefGoogle Scholar
  29. Lisický M.J. & Mucha I. (eds). 2003. Optimalizácia vodného režimu ramennej sústavy v úseku Dunaja Dobrohošt’ — Sap z hl’adiska prírodného prostredia. Faculty of Natural Sciences, Comenius University, Bratislava.Google Scholar
  30. Lunt I.D., Jansen A. & Binns D.L. 2012. Effects of flood timing and livestock grazing on exotic annual plants in riverine floodplains. J. Appl. Ecol. 49: 1131–1139.CrossRefGoogle Scholar
  31. Marhold K. (ed.) 1998. Paprad’orasty a semenné rastliny, pp. 333–687. In: Marhold K. & Hindák F. (eds), Zoznam nižších a vyšších rastlín Slovenska. Veda, Bratislava.Google Scholar
  32. Matečný I. 2010. Monitoring bioty v rámci hodnotenia vplyvu VD Gabčikovo na prírodné prostredie. Acta Environ. Univ. Comen. (Bratislava) 18: 34–46.Google Scholar
  33. Matečný I. & Bedrna Z. 2014. Vývoj vlhkostného režimu na vybraných lokalitách ovplyvnených vodným dielom Gabčíkovo. Geografický Časopis 66: 305–320.Google Scholar
  34. Medvecká J., Jarolímek I., Senko D. & Svitok M. 2014. Fifty years of plant invasion dynamics in Slovakia along a 2,500 m altitudinal gradient. Biol. Invasions 16: 1627–1638.CrossRefGoogle Scholar
  35. Medvecká J., Kliment J., Májeková J., Halada L., Zaliberová M., Gojdičová E., Feráková V & Jarolímek I. 2012. Inventory of the alien flora of Slovakia. Preslia 84: 257–309.Google Scholar
  36. Moravec J. 1994. Fytocenologie. Academia, Praha.Google Scholar
  37. Mucha I. (ed.). 1995. Gabčíkovo part of the Hydroelectric Power Project — Environmental Impact Review, Evaluation based on two year monitoring, collective volume. Faculty of Natural Sciences, Comenius University, Bratislava.Google Scholar
  38. Mucha I. & Lisický M.J. (eds). 2006. Slovak-Hungarian Environmental Monitoring on the Danube 1995–2005. Slovak section. Danube Monitoring Scientific Conference, 25–26 May, 2006. Mosonmagyaróvár.Google Scholar
  39. Nilsson C. & Berggren K. 2000. Alterations of riparian ecosystems caused by river regulation. Bioscience 50: 783–792.CrossRefGoogle Scholar
  40. Ot’ahel’bvá H. & Husák Š. 1992. Vegetácia odvodňovacích kanálov v okolí Gabčíkova-Slané jazero. Ochrana Prírody 1: 95–105.Google Scholar
  41. Ot’ahel’ová H. & Valachovič M. 2002. Effects of Gabčíkovo hydroelectric-station on the aquatic vegetation of the Danube river (Slovakia). Preslia 74: 323–331.Google Scholar
  42. Ot’ahel’ová H. & Valachović M. 2003. Distribution of macrophytes in different water-bodies influenced by Gabćíkovo hydropower station (Slovakia) — present status. Archiv für Hydrobiologie, Supplementum 147. Large Rivers 14: 97–115.Google Scholar
  43. Ot’ahel’ová H. & Valachovič M. 2006. Diversity of macrophytes in aquatic habitats of the Danube River (Bratislava region, Slovakia). Thaiszia — J. Bot. 16: 27–40.Google Scholar
  44. Petrásová M., Jarolímek I. & Medvecká J. 2013. Neophytes in Pannonian hardwood floodplain forests — History, present situation and trends. Forest Ecol. Manag. 308: 31–39.CrossRefGoogle Scholar
  45. Planty-Tabacchi A.M., Tabacchi E., Naiman R.J., Deferrari C. & Decamps H. 1996. Invasibility of species rich communities in riparian zones. Conserv. Biol. 10: 598–607.CrossRefGoogle Scholar
  46. R Core Team. 2012. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
  47. Rood S.B., Gourley C.R., Ammon E.M., Heki L.G., Klotz J.R., Morrison M.L., Mosley D., Scoppettone G.G., Swanson S. & Wagner P.L. 2003. Flows for floodplain forests: A successful riparian restoration. Bioscience 53: 647–656.CrossRefGoogle Scholar
  48. Rood S.B., Hillman C., Sanche T. & Mahoney J.M. 1994. Clonal Reproduction of Riparian Cottonwoods in Southern Alberta. Can. J. Bot. 72: 1766–1774.CrossRefGoogle Scholar
  49. Rood S.B., Samuelson G.M., Braatne J.H., Gourley C.R., Hughes F.M.R. & Mahoney J.M. 2005. Managing river flows to restore floodplain forests. Front. Ecol. Environ. 3: 193–201.CrossRefGoogle Scholar
  50. Sárkány M. 1997. Vodné dielo Gabčíkovo a jeho vplyv na prírodné prostredie z ekosozologického hl’adiska. Daphne 4: 10–12.Google Scholar
  51. Schume H., Grabner M. & Eckmullner O. 2004. The influence of an altered groundwater regime on vessel properties of hybrid poplar. Trees-Struct Funct. 18: 184–194.CrossRefGoogle Scholar
  52. Stromberg J.C., Tiller R. & Richter B. 1996. Effects of groundwater decline on riparian vegetation of semiarid regions: The San Pedro, Arizona. Ecol.l Appl. 6: 113–131.CrossRefGoogle Scholar
  53. ter Braak C.J.F. & Šmilauer P. 2002. CANOCO reference manual and CanoDraw for Windows user’s guide. Software for Canonical Community Ordination (version 4.5). Biometris, Wageningen and České Budějovice.Google Scholar
  54. Tichý L. 2002. JUICE, software for vegetation classification. J. Veg. Sci. 13: 451–453.CrossRefGoogle Scholar
  55. Twedt D.J., Wilson R.R., Henne-Kerr J.L. & Grosshuesch D.A. 2002. Avian response to bottomland hardwood reforestation: The first 1. years. Restor. Ecol. 10: 645–655.CrossRefGoogle Scholar
  56. Uherčíková E. 2006. Flora and forest vegetation in the area of the Gabčíkovo project, pp. 149–159. In: Mucha I. & Lisický M.J. (eds), Slovak-Hungarian Environmental Monitoring on the Danube 1995–2005. Danube monitoring scientific conference, 25–26 May 2. 2006, Mosonmagyaróvár.Google Scholar
  57. Uherčíková E. & Némethová D. 2006. The dynamics of Bodícka brána forest vegetation. Biológia 61: 421–431.Google Scholar
  58. Uherčíková E., Pišút P. & Hajdúk J. 1999. Changes of floodplain-forests vegetation in the permanent monitoring plots and vegetation succession on the Gabcikovo structures dike, pp. 281. 322. In: Mucha I. (ed.), Gabčíkovo part of the hydroelectric power project — environmental impact review. Ground Water Consulting, Ltd., Bratislava.Google Scholar
  59. Uhereková Šmelková D. & Ružičková J. 2012. Monitoring travin-nobylinnej vegetácie na vybraných lesostepných lokalitách alúvia Dunaja. Acta Environ. Univ. Comen. (Bratislava) 20: 78–91.Google Scholar
  60. Vale V.S., Schiavini I., Araujo G.M., Gussons A.E., Lopes S.F., Oliveira A.P., Prado J.A., Arantes C.S. & Dias-Neto O.C. 2015. Effects of reduced water flow in a riparian forest community: a conservation approach. J. Trop. Sci. 27: 13–24.Google Scholar
  61. Walter J., Essl F., Englisch T. & Kiehn M. 2005. Neophytes in Austria: habitat preferences and ecological effects. Neobiota 6: 13–25.Google Scholar
  62. Willner W. & Grabherr G. 2007. Die Wälder und Gebüsche Österreichs. Ein Bestimmung swerk mit Tabellen. Spektrum Akademischer Verlag, Heidelberg.Google Scholar
  63. WWF. 1997. How to Save the Danube Floodplains: The Impact of the Gabcikovo Hydrodam System over Five Years. WWF Statement, Vienna, 51 pp.Google Scholar
  64. Zając A., Tokarska-Guzik, B. and M. Zając. 2011. The role of rivers and streams in the migration of alien plants into the Polish Carpathians. Biodiv. Res. Conser. 23: 43–56.Google Scholar

Copyright information

© Slovak Academy of Sciences 2017

Authors and Affiliations

  • Mária Petrášová-Šibíková
    • 1
    Email author
  • Igor Matečný
    • 2
  • Eva Uherčíková
    • 3
  • Peter Pišút
    • 2
  • Silvia Kubalová
    • 2
  • Milan Valachović
    • 1
  • Iva Hodálová
    • 1
  • Pavol MereďaJr.
    • 1
  • Sarah M. Bisbing
    • 4
  • Jana Medvecká
    • 1
  1. 1.Institute of BotanyPlant Science and Biodiversity Centre of Slovak Academy of SciencesBratislavaSlovakia
  2. 2.Faculty of Natural SciencesComenius UniversityBratislavaSlovakia
  3. 3.Natural History MuseumSlovak National MuseumBratislavaSlovakia
  4. 4.Natural Resources Management & Environmental SciencesCalifornia Polytechnic State UniversityCaliforniaUSA

Personalised recommendations