Advertisement

Biologia

, Volume 72, Issue 4, pp 370–377 | Cite as

Germination strategies of two dominant Carex species in a swamp alder forest: implications for restoration

  • Josef HulíkEmail author
  • Jan Douda
Section Botany

Abstract

Germination strategy is an essential mechanism that determines plant survival in previously established populations or newly colonised sites. Carex is a group of species that has shown difficulties to germinate experimentally and also many of them failed in order to use in restoration projects. Our aim was to determine whether Carex elata and C. elongata that dominate in vegetation of Central European swamps differ in their germination strategy. We conducted germination experiments with stratified and unstratified seeds of both species to determine: 1) if they are able to germinate fresh, 2) if they exhibit a cyclic dormancy pattern, and 3) if they will germinate from a seed bank. We demonstrate fresh seed germination and no evidence of cyclic dormancy in either species. Stratification did not enhance final germination but it did accelerate germination. Seed bank seeds of both species germinate sparsely. We demonstrate that these coexisting Carex species differ with respect to final germination. The higher germination percentages of the fresh seeds compared to buried and seed bank seeds of both species probably reflect adaptation to fluctuating water-level conditions. In summary, these findings support a strategy of fresh germination in a highly-variable environment. Our study indicates that both C. elata and C. elongata are suitable for restoration projects. Successful establishment and revegetation with C. elongata may result simply from sowing fresh seeds. In contrast, seed sowing, combined with vegetatively produced seedling transplants is essential for the successful restoration of C. elata.

Key words

burial experiment fresh germination sedges seed bank seed dormancy stratification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angevine M.W. & Chabot B.F. 1979. Seed germination syndromes in higher plants, pp. 188–206. In: Solbrig O.T., Jain S., Johnson G.B. & Raven P.H. (eds), Topics in Plant Population Biology, Columbia University Press, New York.Google Scholar
  2. Baskin C.C. & Baskin J.M. 1988. Germination ecophysiology of herbaceous plant species in a temperate region. Am. J. Bot. 75: 286–305.CrossRefGoogle Scholar
  3. Baskin C.C. & Baskin J.M. 1993. Seed germination ecophysiology of four summer annual mudflat species of Cyperaceae. Aquat. Bot. 45: 41–52.CrossRefGoogle Scholar
  4. Baskin C.C. & Baskin J.M. 1998. Seeds. Ecology, Biogeography, and Evolution of Dormancy and Germination. Academic Press, San Diego, 665 pp.Google Scholar
  5. Baskin C.C., Chesson P.L. & Baskin J.M. 1993. Annual seed dormancy cycles in two desert winter annuals. J. Ecol. 81: 551–556.CrossRefGoogle Scholar
  6. Baskin C.C., Chester W.E. & Baskin J.M. 1996. Effect of flooding on annual dormancy cycles in buried seeds of two wetland Carex species. Wetlands 16: 84–88.CrossRefGoogle Scholar
  7. Brändel M. 2005. The effect of stratification temperatures on the level of dormancy in primary and secondary dormant seeds of two Carex species. Plant Ecol. 178: 163–169.CrossRefGoogle Scholar
  8. Budelsky R.A. & Galatowitsch S.M. 1999. Effects of moisture, temperature, and time on seed germination of five wetland Carices: implications for restoration. Restor. Ecol. 7: 86–97.CrossRefGoogle Scholar
  9. Cochrane A., Kelly A., Brown K. & Cunneen S. 2002. Relationships between seed germination requirements and ecophysiological characteristics aid the recovery of threatened native plant species in Western Australia. Ecol. Manage. Restor. 3: 47–60.CrossRefGoogle Scholar
  10. Core Team R. 2015. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, URL https://doi.org/www.R-project.org/..Google Scholar
  11. Crawley M. J. 2012. The R book, 2nd edition. John Wiley & Sons, Inc., Chichester, 1076 pp.CrossRefGoogle Scholar
  12. Czerepko J., Boczon A., Pierzgalski E., Sokolowski A.W. & Wróbel M. 2007. Habitat diversity and spontaneous succession of forest wetlands in Bialowieza primeval forest, pp. 37–43. In: Okruszko T., Maltby E., Szatylowicz J., Miroslaw-Swiatek D. & Kotowski W. (eds), Wetlands: Modeling, Monitoring and Management, Taylor and Francis, London.Google Scholar
  13. Douda J., Boublík K., Slezák M., Biurrun I., Nociar J., Havrdová A., Doudová J., Aćić S., Brisse H., Brunet J., Chytrý M., Claessens H., Csiky J., Didukh Y., Dimopoulos P., Dullinger S., FitzPatrick Ú., Guisan A., Horchler P.J., Hrivnák R., Jandt U., Kącki Z., Kevey B., Landucci F., Lecomte H., Lenoir J., Paal J., Paternoster D., Pauli H., Pielech R., Rodwell J.S., Roelandt B., Svenning J.C., Šibík J., Šilc U., Škvorc Ž., Tsiripidis I., Tzonev R.T., Wohlgemuth T. & Zimmermann N.E. 2016a. Vegetation classification and biogeography of European floodplain forests and alder carrs. Appl. Veg. Sci. 19: 147–163.CrossRefGoogle Scholar
  14. Douda J., Čejková A., Douda K. & Kochánková J. 2009. Development of alder carr after the abandonment of wet grasslands during the last 70 years. Ann. For. Sci. 66: 1–13.CrossRefGoogle Scholar
  15. Douda J., Doudová-Kochánková J., Boublík K. & Drašnarová A. 2012. Plant species coexistence at local scale in temperate swamp forest: test of habitat heterogeneity hypothesis. Oe-cologia 169: 523–534.Google Scholar
  16. Douda J., Hulík J. & Doudová J. 2016b. Vegetative sprouting as an additional pathway for a seed size-number trade-off: a field-parameterised simulation approach. Community Ecol. 17: 205–215.CrossRefGoogle Scholar
  17. Emrani S.N., Arzani A. & Saeidi G. 2013. Seed viability, germination and seedling growth of canola (Brassica napus L.) as influenced by chemical mutagens. Afr. J. Biotechnol. 10: 12602–12613.Google Scholar
  18. Eriksson O. & Fröborg H. 1996. “Windows of opportunity” for recruitment in long-lived clonal plants: experimental studies of seedling establishment in Vaccinium shrubs. Can. J. Bot. 74: 1369–1374.CrossRefGoogle Scholar
  19. Fernández-Pascual E., Jiménez-Alfaro B. & Díaz T.E. 2013. The temperature dimension of the seed germination niche in fen wetlands. Plant ecol. 214: 489–499.CrossRefGoogle Scholar
  20. Fojt W. & Harding M. 1995. Thirty years of change in the vegetation communities of valley mires in Suffolk, England. J. Appl. Ecol. 32: 561–577.CrossRefGoogle Scholar
  21. Grime J.P., Mason G., Curtis A.V., Rodman J., Band S.R., Mowforth M.A.G., Neal A.M. & Shaw S. 1981. A comparative study of germination characteristics in a local flora. J. Ecol. 69: 1017–1059.CrossRefGoogle Scholar
  22. Gross N., Suding K.N., Lavorel S. & Roumet C. 2007. Complementarity as a mechanism of coexistence between functional groups of grasses. J. Ecol. 95: 1296–1305.CrossRefGoogle Scholar
  23. Hegi G. 1980. Illustrierte Flora von Mitteleuropa, Band 2, Teil 1, Cyperaceae, Typhaceae incl. Sparganiaceae, Araceae, Lemnaceae, Juncaceae, 3rd edition. Parey, Berlin.Google Scholar
  24. Hothorn T., Bretz F. & Westfall P. 2013. Package “multcomp”. https://doi.org/cran.stat.sfu.ca/web/packages/multcomp/multcomp.pdf (accessed 18.8.2013).Google Scholar
  25. Keddy P.A. 1992: Assembly and response rules: two goals for predictive community ecology. J. Veg. Sci. 3: 157–164.CrossRefGoogle Scholar
  26. Keddy P.A., Wisheu I.C., Shippley B. & Gaudet C. 1989. Seed banks and vegetation management for conservation: toward predictive community ecology, pp. 347–365. In: Leck M.A., Parker V.T. & Simpson R.L. (eds), Ecology of Soil Seed Banks. Academic Press, San Diego.CrossRefGoogle Scholar
  27. Kettenring K.M. & Galatowitsch S.M. 2007. Temperature requirements for dormancy break and seed germination vary greatly among 14 wetland Carex species. Aquat. Bot. 87: 209–220.CrossRefGoogle Scholar
  28. Kettenring K.M. & Galatowitsch S.M. 2011a. Seed rain of restored and natural prairie wetlands. Wetlands 31: 283–294.CrossRefGoogle Scholar
  29. Kettenring K.M. & Galatowitsch S.M. 2011b. Carex seedling emergence in restored and natural prairie wetlands. Wetlands 31: 273–281.CrossRefGoogle Scholar
  30. Leck M.A. & Schütz W. 2005. Regeneration of Cyperaceae, with particular reference to seed ecology and seed banks. Perspect. Plant Ecol. Evol. Syst. 7: 95–133.CrossRefGoogle Scholar
  31. Mayfield M.M. & Levine J.M. 2010. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol. Lett. 13: 1085–1093.PubMedCrossRefGoogle Scholar
  32. McCullagh P. & Nelder J. A. 1989. Generalized Linear Models, 2nd edition. Chapman & Hall, London, 532 pp.CrossRefGoogle Scholar
  33. Narbona E., Delgado A., Encina F., Miguez M. & Buide M.L. 2013. Seed germination and seedling establishment of the rare Carex helodes Link depend on the proximity to water. Aquat. Bot. 110: 55–60.CrossRefGoogle Scholar
  34. Schütz W. 1997a. Are germination strategies important for the ability of cespitose wetland sedges (Carex) to grow in forests. Can. J. Bot. 75: 1692–1699.CrossRefGoogle Scholar
  35. Schütz W. 1997b. Primary dormancy and annual dormancy cycles in seeds of six temperate wetland sedges. Aquat. Bot. 59: 75–85.CrossRefGoogle Scholar
  36. Schütz W. 2000. Ecology of seed dormancy and germination in sedges (Carex). Perspect. Plant Ecol. Evol. Syst. 3: 67–89.CrossRefGoogle Scholar
  37. Schütz W. & Rave G. 1999. The effect of cold stratification and light on the seed germination of temperate sedges (Carex) from various habitats and implications for regenerative strategies. Plant Ecol. 144: 215–230.CrossRefGoogle Scholar
  38. Schütz W. & Rave G. 2003. Variation in seed dormancy of the wetland sedge, Carex elongata, between populations and individuals in two consecutive years. Seed Sci. Res. 13: 315–322.CrossRefGoogle Scholar
  39. Silvertown J. 2004. Plant coexistence and the niche. Trends Ecol. Evol. 19: 605–611.CrossRefGoogle Scholar
  40. Thompson K., Bakker J.P. & Bekker R.M. 1997. The soil seed banks of North West Europe: methodology, density and longevity. Cambridge university press, Cambridge, 288 pp.Google Scholar
  41. Tolasz R., Míková T. & Valeriánová A. 2007. Climate atlas of Czechia. ČHMÚ, Praha & UP, Olomouc.Google Scholar
  42. Van der Valk A.G., Bremholm T.L. & Gordon E. 1999. The restoration of sedge meadows: seed viability, seed germination requirements, and seedling growth of Carex species. Wetlands 19: 756–764.CrossRefGoogle Scholar
  43. Van der Valk A.G. & Pederson R.L. 1989. Seed banks and the management and restoration of natural vegetation, pp. 329–346. In: Leck M.A., Parker V.T. & Simpson R.L. (eds), Ecology of Soil Seed Banks, Academic Press, San Diego.CrossRefGoogle Scholar
  44. Van Kleunen M., Fischer M. & Schmid B. 2002. Experimental life-history evolution: selection on the allocation to sexual reproduction and its plasticity in a clonal plant. Evolution 56: 2168–2177.PubMedCrossRefPubMedCentralGoogle Scholar
  45. Venables W.N. & Ripley B.D. 1998. Modern Applied Statistics with S-Plus. Springer-Verlag, New York, 447 pp.Google Scholar

Copyright information

© Slovak Academy of Sciences 2017

Authors and Affiliations

  1. 1.Faculty of Environmental SciencesCzech University of Life Sciences PraguePrahaCzech Republic

Personalised recommendations