, Volume 72, Issue 2, pp 140–144 | Cite as

Yield improvement of the king oyster mushroom, Pleurotus eryngii, by transformation of its cellulase gene

  • Urarux Romruen
  • Eakaphun BangyeekhunEmail author
Section Cellular and Molecular Biology


A plasmid pCAMBIA1301 containing Pleurotus eryngii cellulase gene (PEcbh), under the control of Lentinus edodes glyceraldehyde-3-phosphate dehydrogenase (LEgpd) promoter, was constructed and used as an expression vector. The vector was transformed into the tissue of P. eryngii using Agrobacterium tumefaciens-mediated transformation (ATMT) method and 4 transformants (PET1-4) were obtained. The positive transformants were confirmed by cultivation in media containing hygromycin and by PCR amplification of hygromycin B resistance-LEgpd promoter gene fragment. Unpredicted, cellulase specific activities of the transformants were not higher than those of the wild type. Mushroom cultivation was performed in the laboratory and the results revealed that the average biological efficiency of PET4 was significantly 1.52 times higher than those of the wild type.

Key words

Pleurotus eryngii cellulase Agrobacterium tumefaciens transformation 



Agrobacterium tumefaciens-mediated transformation


biological efficiency






hygromycin B resistance


Lentinus edodes glyceraldehyde-3-phosphate dehydrogenase


potato dextrose agar


Pleurotus eryngii cellulase gene


Pleurotus eryngii transformant strains 1-4


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chen S.Y., Ho K.J., Hsieh Y.J., Wang L.T. & Mau J.L. 2012. Contents of lovastatin, γ-aminobutyric acid and ergothioneine in mushroom fruiting bodies and mycelia. LWT Food Sci. Technol. 47: 274–278.CrossRefGoogle Scholar
  2. Chen X., Stone M., Schlagnhaufer C. & Romaine C.P. 2000. A fruiting body tissue method for efficient Agrobacterium-mediated transformation of Agaricus bisporus. Appl. Environ. Microbiol. 66: 4510–4513.CrossRefGoogle Scholar
  3. Cho J.H., Lee S.E., ChangW.B. & Cha J.S. 2006. Agrobacterium-mediated transformation of the winter mushroom, Flammulina velutipes. Korean J. Mycol. 34: 104–107.Google Scholar
  4. Chukeatirote E., Maharachchikumbura S.S.N., Wongkham S., Sysouphanthong P., Phookamsak R. & Hyde K.D. 2012. Cloning and sequence analysis of the cellobiohydrolase I genes from some basidiomycetes. Korean J. Mycol. 40: 107–110.Google Scholar
  5. Febriki-Ourang S., Jalali-Javaran M., Mohammadi-Goltapeh E., Alizadeh H. & Honari H. 2013. Optimization of Agrobacterium-mediated transformation in oyster mushroom (Pleurotus ostreatus) by vector containing human pro-insulin gene. Iranian J. Genet. Plant Breed. 2: 1–9.Google Scholar
  6. Irwin D., Shin D.H., Zhang S., Barr B.K., Sakon J., Karplus P.A. & Wilson D.B. 1998. Roles of the catalytic domain and two cellulose binding domains of Thermomonospora fusca E4 in cellulose hydrolysis. J. Bacteriol. 180: 1709–1714.PubMedPubMedCentralGoogle Scholar
  7. Kim S., Sapkota K., Choi B.S. & Kim S.J. 2010. Expression of human growth hormone gene in Pleurotus eryngii. Cent. Eur. J. Biol. 5: 791–799.Google Scholar
  8. Kurt S. & Buyukalaca S. 2010. Yield performances and changes in enzyme activities of Pleurotus spp. (P. ostreatus and P. sajorcaju) cultivated on different agricultural wastes. Bioresour. Technol. 101: 3164–3169.CrossRefGoogle Scholar
  9. Lee C.C., Wong D.W.S. & Robertson G.H. 2001. Cloning and characterization of two cellulase genes from Lentinula edodes. FEMS Microbiol. Lett. 205: 355–360.CrossRefGoogle Scholar
  10. Michielse C.B., Hooykaas P.J.J., Hondel C.A.M.J.J. & Ram A.F.J. 2005. Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr. Genet. 48: 1–17.CrossRefGoogle Scholar
  11. Michielse C.B., Hooykaas P.J.J., Hondel C.A.M.J.J. & Ram A.F.J. 2008. Agrobacterium-mediated transformation of the filamentous fungus Aspergillus awamori. Nat. Protoc. 3: 1671–1678.CrossRefGoogle Scholar
  12. Mikosch T.S.P., Lavrijssen B., Sonnenberg A.S.M. & Griensven L.J.L.D. 2001. Transformation of the cultivated mushroom Agaricus bisporus (Lange) using T-DNA from Agrobacterium tumefaciens. Curr. Genet. 39: 35–39.CrossRefGoogle Scholar
  13. Moonmoon M., Uddin M.N., Ahmed S., Shelly N.J. & Khan M.A. 2010. Cultivation of different strains of king oyster mushroom (Pleurotus eryngii) on saw dust and rice straw in Bangladesh. Saudi J. Biol. Sci. 17: 341–345.CrossRefGoogle Scholar
  14. Okamoto T., Yamada M., Sekiya S., Okuhara T., Taguchi G., Inatomi S. & Shimosaka M. 2010. Agrobacterium tumefaciens-mediated transformation of the vegetative dikaryotic mycelium of the cultivated mushroom Flammulina velutipes. Biosci. Biotechnol. Biochem. 74: 2327–2329.CrossRefGoogle Scholar
  15. Rodriguez Estrada A.E., Jimenez-Gasco M.M. & Royse D.J. 2009. Improvement of yield of Pleurotus eryngii var. eryngii by substrate supplementation and use of a casing overlay. Bioresour. Technol. 100: 5270–5276.CrossRefGoogle Scholar
  16. Rodriguez Estrada A.E. & Royse D.J. 2007. Yield, size and bacterial blotch resistance of Pleurotus eryngii grown on cottonseed hulls/oak sawdust supplemented with manganese, copper and whole ground soybean. Bioresour. Technol. 98: 1898–1906.CrossRefGoogle Scholar
  17. Romruen U. & Bangyeekhun E. 2016. Cloning and expression of the cellulase gene from the king oyster mushroom, Pleurotus eryngii. Silpakorn U. Sci. Technol. J. 10: 22–30.Google Scholar
  18. Stamets P. 1993. Growing Gourmet and Medicinal Mushrooms. Ten Speed Press, Berkeley. 574 pp.Google Scholar
  19. Wang H. & Ng T.B. 2004. Eryngin, a novel antifungal peptide from fruiting bodies of the edible mushroom Pleurotus eryngii. Peptides 25: 1–5.CrossRefGoogle Scholar
  20. Wang J., Guo L., Zhang K., Wu Q. & Lin J. 2008. Highly efficient Agrobacterium-mediated transformation of Volvariella volvacea. Bioresour. Technol. 99: 8524–8527.CrossRefGoogle Scholar
  21. Weigel D. & Glazebrook J. 2006. Transformation of Agrobacterium using the freeze-thaw method. CSH Protoc. 7: 3.Google Scholar
  22. Zhao F.Y., Lin J.F., Zeng X.L., Guo L.Q., Wang Y.H. & You L.R. 2010. Improvement in fruiting body yield by introduction of the Ampullaria crossean multi-functional cellulase gene into Volvariella volvacea. Bioresour. Technol. 101: 6482–6486.CrossRefGoogle Scholar

Copyright information

© Slovak Academy of Sciences 2017

Authors and Affiliations

  1. 1.Department of Microbiology, Faculty of ScienceSilpakorn UniversityNakhon PathomThailand

Personalised recommendations