Advertisement

Biologia

, Volume 72, Issue 2, pp 153–160 | Cite as

Development of an efficient Agrobacterium mediated transformation system for chickpea (Cicer arietinum)

  • Jaya Srivastava
  • Subhojit DattaEmail author
  • Sudhakar P. Mishra
Section Botany

Abstract

Morphologically normal and fertile transgenic chickpea plants have been regenerated through a standardized transformation protocols. This protocol is based on the infection of apical meristem explants (AME) with Agrobacterium strain EHA105. The stain, carrying pCAMBIA2301 vector contained β-glucuronidase (uidA) gene and neomycin phosphotransferase (nptII) genes. Different explants of chickpea and Agrobacterium specific conditions were standardized with the help of transient β-glucuronidase (uidA) gene expression to further optimize the transformation protocol. Pre-conditiong of the explants, vacuum infiltration and presence of acetosyringone significantly enhanced the frequency of gus expression. Positive transformants with nptII and gus genes were confirmed by PCR and histochemical gus analysis. An overall successful chickpea transformation frequency of 1.2 was achieved. This high efficiency and easy to use method may provide opportunities for the development of transgenic lines with different useful genes in chickpea in near future.

Key words

Cicer arietinum chickpea Agrobacterium genetic transformation transformation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acharjee S., Sarmah B.K., Kumar P.A., Olsen K., Mahon R., Moar W.J., Moore A. & Higgins T.J.V. 2010. Transgenic chickpeas (Cicer arietinum L.) expressing a sequencemodified cry2Aa gene. Plant Sci. 178: 333–339.CrossRefGoogle Scholar
  2. Chakraborti D., Sarkar A., Mondal H.A. & Das S. 2009. Tissue specific expression of potent insecticidal, Allium sativum leaf agglutinin (ASAL) in important pulse crop, chickpea (Cicer arietinum L.) to resist the phloem feeding Aphis craccivora. Transgenic Res 18: 529–544.CrossRefGoogle Scholar
  3. Cheng M., Fry J.E., Pang S., Zhou H., Hironaka C. M., Duncan D.R., Conner T.W. & Wan Y. 1997. Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol. 115: 971–980.CrossRefGoogle Scholar
  4. De Block M. 1993. The cell biology of plant transformation: Current state, problems, prospects and implications for plant breeding. Euphytica 71: 1–14.CrossRefGoogle Scholar
  5. De Clercq J., Zambre M., Van Montagu M., Dillen W. & Angenon G. 2002. An optimized Agrobacterium-mediated transformation procedure for Phaseolus acutifolius A. Gray. Plant Cell Rep. 21: 333–343.CrossRefGoogle Scholar
  6. De la Riva G.A., Gonzalez-Cabrera J., Vazquez-Padrn R. & Ayra-Pardo C. 1998. The Agrobacterium tumefaciens gene transfer to plant cell. Electr. J Biotech. (https://doi.org/www.ejbiotechnology.info/content/vol1/issue3/full/1/bip)Google Scholar
  7. Dillen W., De Clercq J., Kapila J., Zambre M., Van Montagu M. & Angenon G. 1997. The effect of temperature on Agrobacterium tumefaciens-mediated gene transfer to plants. Plant J. 12: 1459–146.CrossRefGoogle Scholar
  8. Dita M.A., Rispail N., Prats E., Rubiales D. & Singh K.B. 2006. Biotechnology approaches to overcome biotic and abiotic stress constraints in legumes. Euphytica 147: 1–24.CrossRefGoogle Scholar
  9. Henzi M.X., Christey M.C. & McNeil D.L. 2000. Factors that influence Agrobacterium rhizogenes mediated transformation of broccoli (Brassica oleracea L. var. italica). Plant Cell Rep. 19: 994–999.CrossRefGoogle Scholar
  10. Hinchee M.A.W., Connor-Ward D.V., Newell C.A., McDonnell R.E., Sato S.J., Gasser C.S., Fischhoff D.A., Re D.B., Fraley R.T. & Horsch R.B. 1988. Production of transgenic soybean plants using Agrobacterium mediated transformation. Bio Technol. 6: 915–922.Google Scholar
  11. Jefferson R.A. 1987. Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol. Rep. 5: 387–405.CrossRefGoogle Scholar
  12. Kar S., Basu D., Das S., Ramakrishnan, N.A., Mukherjee P., Nayak P. & Sen S.K. 1997. Expression of cry1A(c) gene of Bacillus thuringiensis in transgenic chickpea plants inhibits development of pod borer (Heliothis armigera) larvae. Transgenic Res. 6: 177–175.CrossRefGoogle Scholar
  13. ai]Krishnamurthy K.V., Suhasani K., Sagare A.P., Meixner M., de Kathen A., Pickardt T. & Schieder O. 2000. Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.) embryo axes. Plant Cell Rep. 19: 235–240.CrossRefGoogle Scholar
  14. Mehrotra M., Sanyal I. & Amla D.V. 2011. High efficiency Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.) and regeneration of insect resistant transgenic plants. Plant Cell Rep. 30: 1603–1616.CrossRefGoogle Scholar
  15. Polowick P.L., Baliski D.S. & Mahon J.D. 2004. Agrobacterium tumefaciens- mediated transformation of chickpea (Cicer arietinum L.): gene integration, expression and inheritance. Plant Cell Rep. 23: 485–491.CrossRefGoogle Scholar
  16. Olhoft P.M. & Somers D.A. 2001. L-Cysteine increases Agrobacterium-mediated transformation of soybean cotyledonary–node cells. Plant Cell Rep. 20: 706–711.CrossRefGoogle Scholar
  17. Sahoo L. & Jaiwal P.K. 2008. A Compendium of Transgenic Crop Plants: Asiatic Beans, pp. 115–132. In: Kole C. & Hall T.C. (eds), Blackwell Publ, Oxford, UK.Google Scholar
  18. Sanyal I., Singh A.K., Kaushik M. & Amla D.V. 2005. Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.) with Bacillus thuringiensis, cry1Ac gene for resistance against pod borer insect Helicoverpa armigera. Plant Sci. 168: 1135–1146.CrossRefGoogle Scholar
  19. Sarmah B.K., Moore A., Tate W., Molving L., Morton R.L., Ress D.P., Chiaiese P., Chrispeels M.J., Tabe L.M. & Higgins T.J.V. 2004. Transgenic chickpea seeds expressing high levels of a bean a-amylase inhibitor. Mol. Breed. 14: 73–82.CrossRefGoogle Scholar
  20. Singh R., Jat R.S., Sahoo P.D. & Srinivasa. 2002. Thidiazuron induced multiple shoot formation in chickpea (Cicer arietinum L.). J. Plant Biochem. Biotechnol. 1: 129–131.CrossRefGoogle Scholar
  21. Srivastava J., Das A., Soren K.R., Chaturvedi S.K., Nadarajan N. & Datta S. 2012. Ontogeny of in vitro Shoot Organogenesis from Axillary Meristem Explants in Chickpea (Cicer arietinum L.). J. Crop Sci. Biotech. 15: 53–57.CrossRefGoogle Scholar
  22. Travella S., Ross S.M., Harden J., Everett C., Snape J.W. & Harwood W. A. 2005. A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediated techniques. Plant Cell Rep. 23: 780–789.CrossRefGoogle Scholar
  23. Tripathi L., Singh A.K., Singh S., Singh R., Chaudhary S., Sanyal I. & Amla D.V. 2013. Optimization of regeneration and Agrobacterium-mediated transformation of immature cotyledons of chickpea (Cicer arietinum L.). Plant Cell Tiss. Org. Cult. 113: 513.CrossRefGoogle Scholar
  24. Wright M.S., Koehler S.M., Hinchee M.A. & Carnes M.G. 1986. Plant regeneration by organogenesis in Glycine max. Plant Cell Rep. 5: 150–154.CrossRefGoogle Scholar
  25. Zupan J., Muth T.R., Draper O. & Zambryski P. 2000. The transfer of DNA from Agrobacterium tumefaciens into plants: a feast of fundamental insights. Plant J. 23: 11–28.CrossRefGoogle Scholar

Copyright information

© Slovak Academy of Sciences 2017

Authors and Affiliations

  • Jaya Srivastava
    • 1
    • 2
  • Subhojit Datta
    • 1
    Email author
  • Sudhakar P. Mishra
    • 2
  1. 1.Biotechnology UnitICAR-Indian Institute of Pulses ResearchKanpurIndia
  2. 2.Mahatma Gandhi Chitrakoot Gramodaya VishvavidyalayaChitrakootIndia

Personalised recommendations