, Volume 71, Issue 11, pp 1298–1303 | Cite as

Temperature and precipitation effects on breeding productivity of some passerines — a multivariate analysis of constant effort mist-netting data

  • József GyuráczEmail author
  • Péter Bánhidi
  • József Góczán
  • Péter Illés
  • Sándor Kalmár
  • Zoltán Lukács
  • Csaba Németh
  • László Varga


The relationship between the temperature, the precipitation of the breeding season’s months, and the annual proportions of the first year birds such as the indicators of the breeding success were examined by canonical correspondence analysis (CCA) having targeted nine common passerine species. The results of our study have shown that the high April and May temperature has been favourable for the breeding of the partial and the short-distance migrants, the common blackbird (Turdus merula) and the Eurasian blackcap (Sylvia atricapilla). This is confirmed by the fact that the highest annual capture (164) of the hatching year of the Eurasian blackcap was in 2009, when there was the mildest April during the study period (13.57°C), while the lowest annual capture (15) was in 2002, when there was the second coolest April (9.78°C). The common chiffchaff (Phylloscopus collybita) was a wet spring-tolerant species. There was negative correlation between April, May, June temperature and proportion of young great tit. The relationships between the annual captures of first year birds and the climate variables could not be identified with the methods used for the European robin (Erithacus rubecula), the common whitethroat (Sylvia communis), the lesser whitethroat (Sylvia curruca) and the blue tit (Parus caeruleus). The temperature in July was the most important climate factor for the breeding success of the long-distance migrant European pied flycatcher (Fycedula hypoleuca).

Key words

constant effort netting temperature precipitation canonical correspondence analysis post-fledging period 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We would like to thank all those who took part in the field work and the members of Birdlife Hungary for the bird ringing and the data collecting work. We thank D. Winkler for the help collecting the NCDC data. The study was partially supported by the University of West Hungary (TÁMOP-4.2.2.D-15/1/KONV-2015-0023 “Climate effect”). We are also grateful to anonymous reviewers and the editors for their detailed and thoughtful critiques of the earlier draft of the manuscript, which has been greatly improved, and Péter Molnár, Veronika Gyurácz for language revision. This paper is part of the South-East Bird Migration Research Network and Actio Hungarica publications.


  1. Arlettaz R., Schaad M., Reichlin T.S. & Schaub M. 2010. Impact of weather and climate variation on Hoopoe reproductive ecology and population growth. J. Ornithol. 151 (4): 889–899. DOI: 10.1007/s10336-010-0527-7CrossRefGoogle Scholar
  2. Arnaud C., Becker P.H., Dobson F.S. & Charmantier A. 2013. Canalization of phenology in common terns: genetic and phenotypic variations in spring arrival date. Behav. Ecol. 24 (3): 683–690. DOI: 10.1093/beheco/ars214CrossRefGoogle Scholar
  3. Baillie S.R. 1990. Integrated population monitoring of breeding birds in Britain and Ireland. Ibis 132 (2): 151–166. DOI: 10.1111/j.1474-919X.1990.tb01035.xCrossRefGoogle Scholar
  4. Böhning-Gaese K. & Bauer H.G. 1996. Changes in species abundance, distribution, and diversity in a central European bird community. Conserv. Biol. 10 (1): 175–187. DOI: 10.1046/j.1523-1739.1996.10010175.xCrossRefGoogle Scholar
  5. Boren J.C., Engle D.M., Palmer M.W., Masters R.E. & Criner T. 1999. Land use change effects on breeding bird community composition. J. Range Manage. 52 (5): 420–430. DOI: 10.2307/4003767CrossRefGoogle Scholar
  6. Bradbury R.B., Wilson J.D., Moorcroft D., Morris A.J. & Perkins A.J. 2003. Habitat and weather are weak correlates of nestling condition and growth rates of four UK farmland passerines. Ibis 145 (2): 295–306. DOI: 10.1046/j.1474-919X.2003.00142.xCrossRefGoogle Scholar
  7. Busse P. 1994. General patterns of population trends of migrating passerines at the southern Baltic coast based on trapping results (1961–1990), pp. 425–434. In: Hagemijer W & Verstrael T. (eds), Bird Numbers 1992. Distribution, Monitoring and Ecological Aspects. Proceedings of the 12th International Conference of IBCC and EOAC, SOVON, Beek-Ubbergen.Google Scholar
  8. Busse P. 2000. Bird Station Manual. SE European Bird Migration Network, Gdansk, 264 pp. ISBN: 83-86230-78-9, DOI: 10.13140/2.1.1690.1442Google Scholar
  9. Both C. & Visser M.E. 2005. The effect of climate change on the correlation between avian life-history traits. Global Change Biol. 11 (10): 1606–1613. DOI: 10.1111/j.1365-2486.2005.01038.xCrossRefGoogle Scholar
  10. Charmantier A. & Gienapp P. 2014. Climate change and timing of avian breeding and migration: evolutionary versus plastic changes. Evol. Appl. 7 (1): 15–28. DOI: 10.1111/eva.12126PubMedCrossRefGoogle Scholar
  11. Cramp S. & Perrins C.M. 1992. Handbook of the Birds of Europe, the Middle East and North Africa. The Birds of the Western Palearctic. Vol. 6. Flycatchers toWarblers. Oxford University Press, Oxford, 736 pp. ISBN-10: 0198575092Google Scholar
  12. Dawson R.D. & Bortolotti G.R. 2000. Reproductive success of American Kestrels: the role of prey abundance and weather. The Condor 102 (4): 814–822. DOI: 10.2307/1370308CrossRefGoogle Scholar
  13. Dufva R. & Allander K. 1996. Variable effects of the Hen Flea Ceratophyllus gallinae on the breeding success of the Great Tit Parus major in relation to weather conditions. Ibis 138 (4): 772–777. DOI: 10.1111/j.1474-919X.1996.tb08835.xCrossRefGoogle Scholar
  14. Dunn E.H. & Ralph C.J. (eds). 2004. Monitoring bird population using mist nets. Studies in Avian Biology No. 29. COS, Camarillo, 211 pp. ISBN: 0-943610-61-3Google Scholar
  15. Dunn P.O & Winkler D.W. 2010. Effects of climate change on timing of breeding and reproductive success in birds, Chapter 10, pp. 113–128. In: Møller A.P., Fiedler W. & Berthold P. (eds), Effects of Climate Change on Birds, Oxford University Press, Oxford. ISBN: 978-0-19-956974-8Google Scholar
  16. Eglington S., Juliard R., Gargallo G., Van der Jeugd H., Pearce Higgins J., Baillie S.R. & Robinson R.A. 2015. Latitudinal gradients in the productivity of European migrant warblers have not shifted northwards during a period of climate change. Global Ecol. Biogeogr. 24 (4): 427–436. DOI: 10.1111/geb.12267CrossRefGoogle Scholar
  17. Eglington S.M. & Pearce-Higgins J.W. 2012. Disentangling the relative importance of changes in climate and land-use intensity in driving recent bird population trends. PLoS ONE 7 (3): e30407 DOI: 10.1371/journal.pone.0030407PubMedPubMedCentralCrossRefGoogle Scholar
  18. Elkins N. 2004. Weather and Bird Behaviour. T & A D Poyser, London, 239 pp. ISBN: 978-0-7136—6825-4Google Scholar
  19. Ewing S. 2008. A review of the population trends of Afro-Palearctic migrants and some potential factors contributing to these declines. RSPB Research Report No. 31., Royal Society for the Protection of Birds. ISBN: 1905601131, 9781905601134Google Scholar
  20. Franklin A.B., Anderson D.R., Gutiérrez R.J. & Burnham K.P. 2000. Climate, habitat quality, and fitness in Northern spotted owl populations in Northwestern California. Ecol. Monogr. 70 (4): 539–590. DOI: 10.1890/0012-9615(2000)070 [0539:CHQAFI]2.0.CO;2CrossRefGoogle Scholar
  21. Gienapp P. & Bregnballe T. 2012. Fitness consequences of timing of migration and breeding in cormorants. PLoS One 7 (9): e46165. DOI: 10.1371/journal.pone.0046165PubMedPubMedCentralCrossRefGoogle Scholar
  22. Grimm A., Weiß B.M., Kulik L., Mihoub J-B., Mundry R., Köppen U., Brueckmann T., Thomsen R. & Widdig A. 2015. Earlier breeding, lower success: does the spatial scale of climatic conditions matter in a migratory passerine bird? Ecol. Evol. 5 (23): 5722–5734. DOI: 10.1002/ece3.1824PubMedPubMedCentralCrossRefGoogle Scholar
  23. Hammer Ø., Harper D.A.T. & Ryan P.D. 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4 (1): 9 pp.Google Scholar
  24. Holmes R.T. 2007. Understanding population change in migratory songbirds: long-term and experimental studies of Neotropical migrants in breeding and wintering areas. Ibis 149 (2): 2–13. DOI: 10.1111/j.1474-919X.2007.00685.xCrossRefGoogle Scholar
  25. Høye T.T. & Forchammer M.C. 2008. Phenology of High- Arctic arthropods: effect of climate on spatial, seasonal and inter-annual variation. Adv. Ecol. Res. 40: 299–324. DOI: 10.1016/S0065-2504(07)00013-XCrossRefGoogle Scholar
  26. Hussel D.J.T. 2004. Determining productivity indices from age composition of migrants captured for banding: problems and possible solution. Stud. Avian Biol. 29: 82–91. ISSN: 0197-9922Google Scholar
  27. Jones J., Doran P.J. & Holmes R.T. 2003. Climate and food synchronize regional forest bird abundances. Ecology 84 (11): 3024–3032. DOI: 10.1890/02-0639CrossRefGoogle Scholar
  28. King A.F. & Holmer S. (eds). 2010. The State of the Birds 2010 Report on Climate Change, United States of America. U.S. North American Bird Conservation Initiative, U.S. Committee, 2010. Department of the Interior: Washington, DC, 32 pp.Google Scholar
  29. Leech D.I. & Crick H.Q.P. 2007 Influence of climate change on the abundance, distribution and phenology of woodland bird species in temperate regions. Ibis 149 (s2): 128–145. DOI: 10.1111/j.1474-919X.2007.00729.xCrossRefGoogle Scholar
  30. Li S.H. & Brown J.L. 1999. Influence of climate on reproductive success in Mexican jays. Auk 116 (4): 924–936. DOI: 10.2307/4089672CrossRefGoogle Scholar
  31. Marchant J.H. 1992. Recent trends in breeding populations of some common trans-Saharan migrant birds in northern Europe. Ibis 135 (Suppl 1): 113–119. DOI: 10.1111/j.1474-919X.1992.tb04741.xGoogle Scholar
  32. NCDC 2015. National Climatic Data Center. (accessed 31.12.2015)Google Scholar
  33. Nott M.P., Desante D.F., Siegel R.B. & Pyle P. 2002. Influences of the El Nińo/Southern Oscillation and the North Atlantic Oscillation on avian productivity in forests of the Pacific northwest of North America. Global Ecol. Biogeogr. 11 (4): 333–342. DOI: 10.1046/j.1466-822X.2002.00296.xCrossRefGoogle Scholar
  34. Öberg M., Arlt D., Pärt T., Laugen A.T., Eggers S. & Low M. 2015. Rainfall during parental care reduces reproductive and survival components of fitness in a passerine bird. Ecol. Evol. 5 (2): 345–356. DOI: 10.1002/ece3.1345PubMedCrossRefPubMedCentralGoogle Scholar
  35. Pasinelli G., Schaub M., Häfliger G., Frey M., Jakober H., Müller M., Stauber W., Møller, A.P., Flensted-Jensen E., Klarbor K., Mardal W. & Nielsen J.T. 2010. Climate change affects the duration of the reproductive season in birds. J. Anim. Ecol. 79 (4): 777–784. DOI: 10.1111/j.1365-2656.2010.01677.x.Google Scholar
  36. Peach W.J., Buckland S.T. & Baillie S.R. 1996. The use of constant effort mist-netting to measure between-year changes in the abundance and productivity of common passerines. Bird Study 43 (2): 142–156. DOI: 10.1080/00063659609461007CrossRefGoogle Scholar
  37. Pearce-Higgins J.W., Eglington S.M., Martay B. & Chamberlain D.E. 2015. Drivers of climate change impacts on bird communities. J. Anim. Ecol. 84 (4): 943–954. DOI: 10.1111/1365-2656.12364PubMedCrossRefPubMedCentralGoogle Scholar
  38. Pearce-Higgins J.W. & Green R.E. 2014. Birds and Climate Change: Impacts and Conservation Responses. Cambridge University Press, Cambridge, 477 pp. ISBN: 9780521132190CrossRefGoogle Scholar
  39. Pearce-Higgins J.W. & Yalden D.W. 2004. Habitat selection, diet, arthropod availability and growth of a moorland wader: the ecology of European Golden Plover Pluvialis apricaria chicks. Ibis 146 (2): 335–346. DOI: 10.1111/j.1474-919X.2004.00278.xCrossRefGoogle Scholar
  40. Przybylo R., Sheldon B.C. & Merilä J. 2000. Climatic influences on breeding and morphology: evidence or phenotypic plasticity. J. Anim. Ecol. 69 (3): 395–403. DOI: 10.1046/j.1365-2656.2000.00401.xCrossRefGoogle Scholar
  41. Reed T.E., Jenouvrier S. & Visser M.E. 2013. Phenological mismatch strongly affects individual fitness but not population demography in a woodland passerine. J. Anim. Ecol. 82 (1): 131–144. DOI: 10.1111/j.1365-y2656.2012.02020.xPubMedCrossRefGoogle Scholar
  42. Reif J. 2013. Long-term trends in bird populations: a review of patterns and potential drivers in North America and Europe. Acta Ornithol. 48 (1): 1–16. DOI: 10.3161/000164513X669 955CrossRefGoogle Scholar
  43. Robinson R.A., Baillie S.R. & Crick H.Q.P. 2007. Weatherdependent survival: implications of climate change for passerine population processes. Ibis 149 (2): 357–364. DOI: 10.1111/j.1474-919X.2006.00648.xCrossRefGoogle Scholar
  44. Robinson R.A., Balmer D.E. & Marchant J.H. 2008. Survival rates of hirundines in relation to British and African rainfall. Ringing & Migration 24 (1): 1–6. DOI: 10.1080/03078698.2008.9674375CrossRefGoogle Scholar
  45. Rodriguez C. & Bustamante J. 2003. The effect of weather on lesser kestrel breeding success: can climate change explain historical population declines? J. Anim. Ecol. 72 (5): 793–810. DOI: 10.1046/j.1365-2656.2003.00757.xCrossRefGoogle Scholar
  46. Sanderson F.J., Donald P.F., Pain D.J., Burfield I.J. & Bommel F.P.J. 2006. Long-term population declines in Afro-Palearctic migrant birds. Biol. Conserv. 131 (1): 93–105. DOI: 10.1016/j.biocon.2006.02.008CrossRefGoogle Scholar
  47. Sanz J.J. 2003. Large-scale effect of climate change on breeding parameters of pied flycatchers in western Europe. Ecography 26 (1): 45–50. DOI: 10.1034/j.1600-0587.2003.03251.xCrossRefGoogle Scholar
  48. Siikamäki P. 1996. Nestling growth and mortality of Pied Flycatchers Ficedula hypoleuca in relation to weather and breeding effort. Ibis 138 (3): 471–478. DOI: 10.1111/j.1474-919X.1996.tb08067.xCrossRefGoogle Scholar
  49. Small-Lorenz S.L., Culp L.A., Brandt Ryder T., Will T.C. & Marra P.P. 2013. A blind spot in climate change vulnerability assessments. Nature Climate Chang. 3: 91–93. DOI: 10.1038/nclimate1810CrossRefGoogle Scholar
  50. Sokolov L.V. 1999. Populyatsionnaya dinamika vorob‘innykh ptits [Population dynamics of passerine birds]. Zool. Zh. 78 (3): 311–324.Google Scholar
  51. Stephens P.A., Mason L.R., Green R.E., Gregory R.D., Sauer J.R., Alison J., Aunins A., Brotons L., Butchart, S.H.M., Campedelli T., Chodkiewicz T., Chylarecki P., Crowe O., Elts J., Escandell V., Foppen R.P.B., Heldbjerg H., Herrando S., Husby M., Jiguet F., Lehikoinen A., Lindstrom A., Noble D.G., Paquet J.-Y., Reif J., Sattler T., Szep T., Teufelbauer N., Trautmann S., van Strien A.J., van Turnhout C.A.M., Vorisek P. & Willis S.G. 2016. Consistent response of bird populations to climate change on two continents. Science 352 (6281): 84. DOI: 10.1126/science.aac4858PubMedCrossRefGoogle Scholar
  52. Svensson L. 1992. Identification Guide to European Passerines (4rd Ed.). Naturhistoriska Riksmuséet, Stockholm, 368 pp. ISBN-10: 9163011182, ISBN-13: 978-9163011184Google Scholar
  53. Szép T. 1995. Survival rates of Hungarian sand martins and their relationship with Sahel rainfall. J. Appl. Statist. 22 (5-6): 891–904. DOI: 10.1080/02664769524694CrossRefGoogle Scholar
  54. Szép T., Nagy K., Nagy Z. & Halmos G. 2012. Population trends of common breeding and wintering birds in Hungary, decline of long- distance migrant and farmland birds during 1999–2012. Ornis Hungarica 20 (2): 13–63. DOI: 10.2478/orhu-2013-0007CrossRefGoogle Scholar
  55. ter Braak C.J.F. 1986. Canonical correspondence analysis: a new eigen vector technique for multivariate direct gradient analysis. Ecology 67 (5): 1167–1179. DOI: 10.2307/1938672CrossRefGoogle Scholar
  56. Thomas D.W., Blondel J., Perret P., Lambrechts M.M. & Speakman J.R. 2001a. Energetic and fitness costs of mismatching resource supply and demand in seasonally breeding birds. Science 291 (5513): 2598–2600. DOI: 10.1126/science.1057487PubMedCrossRefGoogle Scholar
  57. Thomas D.W., Blondel J., Perret P., Lambrechts M.M. & Speakman J.R. 2001b. Variation in food supply, time of breeding, and energy expenditure in birds. Science 294 (5542): 471. DOI: 10.1126/science.294.5542.471aCrossRefGoogle Scholar
  58. Tryjanowski P., Kuźniak S. & Sparks T.H. 2002. Earlier arrival of some farmland migrants in western Poland. Ibis 144 (1): 65/62–68. DOI: 10.1046/j.0019-1019.2001.00022.xCrossRefGoogle Scholar
  59. Végvári Z., Bókony V., Barta Z. & Kovács G. 2010. Life history predicts advancement of avian spring migration in response to climate change. Global Change Biol. 16: 1–11. DOI: 10.1111/j.1365-2486.2009.01876.xCrossRefGoogle Scholar
  60. Visser M.E., Holleman L.J.M. & Gienapp P. 2006. Shifts in caterpillar biomass phenology due to climate change and its impact on the breeding biology of an insectivorous bird. Oecologia 147 (1): 164–172. DOI: 10.1007/s00442-005-0299-6PubMedCrossRefGoogle Scholar
  61. Wheater C.P., Bell J.R. & Cook P.A. 2011. Practical Field Guide. Wiley-Blackwell. John Wiley & Sons Ltd, Chichester, 362 pp. ISBN-13: 978-0470694299, ISBN-10: 0470694297Google Scholar
  62. Weatherhead P.J. 2005. Effects of climate variation on timing of nesting, reproductive success, and offspring sex ratios of red-winged blackbirds. Oecologia 144 (1): 168–175. DOI: 10.1007/s00442-005-0009-4PubMedCrossRefPubMedCentralGoogle Scholar
  63. Zaniewicz G. & Busse P. 2010. Like a phoenix from the ashes. Ring 32(1-2): 17–30. DOI: 10.2478/v10050-010-0002-0CrossRefGoogle Scholar

Copyright information

© Slovak Academy of Sciences 2016

Authors and Affiliations

  • József Gyurácz
    • 1
    Email author
  • Péter Bánhidi
    • 2
  • József Góczán
    • 2
  • Péter Illés
    • 2
  • Sándor Kalmár
    • 1
  • Zoltán Lukács
    • 1
  • Csaba Németh
    • 2
  • László Varga
    • 2
  1. 1.Institute of Biology, SzombathelyUniversity of West HungaryHungary
  2. 2.Local Group of BirdLife Hungary, SzombathelyHungary

Personalised recommendations