Advertisement

Biologia

, Volume 71, Issue 9, pp 980–988 | Cite as

The impact of grazing absence in inland saline vegetation — a case study from Slovakia

  • Zuzana DítětováEmail author
  • Daniel Dítě
  • Pavol Eliášjun.
  • Dobromil Galvánek
Section Botany

Abstract

Inland saline habitats of the Pannonian Lowland are highly threatened by drainage and lack of regular management, especially on their northern distribution limit. We studied the impact of abandonment on the dynamics and survival of saline vegetation through a 4-year field experiment on permanent plots in SW Slovakia (the northern part of the Pannonian Lowland). The examined grassland, alliance of Puccinellion limosae was grazed by sheep. Our results unambiguously confirmed that inland saline vegetation responds to the cessation of such natural disturbance very quickly. Species richness and number of halophytes in the scale of 0.01 m2 decreased by half already two years after the abandonment. The most obliged species to grazing was Hordeum geniculatum. This obligate halophyte dependent on disturbance has markedly disappeared on the non-grazed plots, while Elytrigia repens expanded. Moderate grazing is an important requirement for maintenance of halophytic vegetation.

Key words

association Hordeetum hystricishalophytes permanents plots sheep grazing trait-based approach 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam P. 1990. Salt marsh ecology. Cambridge University Press, Cambridge, UK, 461 pp.Google Scholar
  2. Angelini C. & Silliman B.R. 2012. Patch size-dependent community recovery after massive disturbance. Ecology 93: 101–110.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Bagi I., Molnár Zs. & Varga Z. 2011. Szikesek, pp. 114–139. In: Bölöni J., Molnár Zs. & Kun A. (eds), Magyarország élőhelyei: vegetációtípusok leírása és határozója. MTA ÖBKI, Vácrátót, Hungary.Google Scholar
  4. Bakker J.P. 1985. The impact of grazing on plant communities, plant populations and soil conditions on salt marshes. Vege-tatio 62: 391–398.CrossRefGoogle Scholar
  5. Bakker J.P., Bravo L.G. & Mouissie A.M. 2008. Dispersal by cattle of salt-marsh and dune species into salt-marsh and dune communities. Plant Ecol. 197: 43–54.CrossRefGoogle Scholar
  6. Berg G., Esselink P., Groeneweg M. & Kiehl K. 1997. Micropat-terns in Festuca rubra- dominated salt-marsh vegetation induced by sheep grazing. Plant Ecol. 132: 1–14.CrossRefGoogle Scholar
  7. Bonis A., Bouzillé J.B., Amiaud B. & Loucougaray G. 2005. Plant community patterns in old embanked grasslands and the survival of halophytic flora. Flora 200: 74–87.CrossRefGoogle Scholar
  8. Borhidi A., Kevey B. & Lendvai G. 2012. Plant Communities of Hungary. Akadémiai Kiadó, Budapest, Hungary, 544 pp.Google Scholar
  9. Brotherton S.J. & Joyce C.B. 2015. Extreme climate events and wet grasslands: plant traits for ecological resilience. Hydrobi-ologia 750: 229–243.CrossRefGoogle Scholar
  10. Bullock J. & Pakeman, R. 1997. Grazing of lowland heath in England: management methods and their effects on heathland vegetation. Biol. Conserv. 79: 1–13.CrossRefGoogle Scholar
  11. Dengler J., Janisová M., Török P. & Wellstein C. 2014. Biodiversity of Palaearctic grasslands: a synthesis. Agriculture, Ecosystems & Environment 182: 1–14.CrossRefGoogle Scholar
  12. Díaz S., Lavorel S., Mclntyre S.U.E., Falczuk V., Casanoves F., Milchunas D.G., Skarpe C, Rusch G., Sternberg M., Noy-Meir I., Landsberg J., Zhang W.E.I., Clark H. & Campbell B.D. 2006. Plant trait responses to grazing - a global synthesis. Glob. Chang. Biol. 13: 313–341.CrossRefGoogle Scholar
  13. Dítě D., Eliáš P.Jun. & Sádovský M. 2008. Camphorosmetum annuae Rapaics ex Soo 1933 - vanishing plant community of saline habitats in Slovakia. Thaiszia - J. Bot. 18: 9–20.Google Scholar
  14. Dítě D., Eliáš P.Jun. & Melečková Z. 2010. Slaniská - zanikajúce refúgiá vzácnej flóry v pol’nohospodárskej krajine, pp. 21–26. In: Eliašová M. (ed.), Starostlivost o biodiverzitu vo vidieckej krajine: zborník referátov z vedeckej konferencie. Slovak University of Agriculture, Nitra.Google Scholar
  15. Dítě D., Eliáš P.jun., Šuvada R., Petrášová A. & Píš V. 2011. The present distribution and state of halophytic communities with Hordeum, geniculatum in Slovakia. Thaiszia - J. Bot. 21: 11–20.Google Scholar
  16. Dítě D., Eliáš P.jun. & Melečková Z. 2013. Artemisia santonicum subsp. patens in Slovakia: The sad story of obligate halophyte on the northern edge of its distribution range. Hacquetia 12: 5–16.Google Scholar
  17. Dítě D., Melečková Z. & Eliáš P.jun. 2014. Festuco-Puccinellie-tea, pp. 481–510. In: Hegediïšová Vantarová K. & Škodová I. (eds), Rastlinné spoločenstvá Slovenska 5. Travinno-bylinná vegetácia. Veda, Bratislava.Google Scholar
  18. Dormann C.F. & Bakker J.P. 2000. The impact of herbivory and competition on flowering and survival during saltmarsh succession. Plant Biol. 2: 68–76.CrossRefGoogle Scholar
  19. Dostál J. & Červenka M. 1991. Velký klúč na určovanie vyšších rastlín I., II. SPN, Bratislava, 1568 pp.Google Scholar
  20. Eliáš P.jun., Dítě D., Šuvada R., Píš V. & Ikrényi I. 2013a. Hordeum, geniculatum, in the Pannonian Basin: Ecological requirements and grassland vegetation on salt-affected soils. Plant Biosyst. 147: 429–444.CrossRefGoogle Scholar
  21. Eliáš P.jun, Sopotlieva D., Dítě D., Hájková P., Apostolova I., Senko D., Melečková Z. & Hájek M. 2013b. Vegetation diversity of salt-rich grasslands in South-Eastern Europe. Appl. Veg. Sci. 16: 521–537.CrossRefGoogle Scholar
  22. Eliáš P.jun., Dítě D., Kliment J., Hrivnák R. & Feráková V. 2015. Red list of ferns and flowering plants of Slovakia, 5th edition (October 2014). Biologia 70: 218–228.CrossRefGoogle Scholar
  23. Grime J.P. 2001. Plant Strategies, Vegetation Processes, and Ecosystem Properties. 2nd ed. John Wiley and Sons, Chichester, 417 pp.Google Scholar
  24. Huber R. 1994. Changes in plant species richness in a calcareous grassland following changes in environmental conditions. Folia Geobot. 29: 469–482.CrossRefGoogle Scholar
  25. Jacquemyn H., van Mechelen C., Brys R. & Honnay O. 2011. Management effects on the vegetation and soil seed bank of calcareous grasslands: An 11-year experiment. Biol. Cons. 144: 416–422.CrossRefGoogle Scholar
  26. Jensen A. 1985. The effect of cattle and sheep grazing on salt-marsh vegetation at Skallingen, Denmark. Vegetatio 60: 37–48.CrossRefGoogle Scholar
  27. Jerrentrup J.S., Seither M., Petersen U. & Isselstein J. 2015. Little grazer species effect on the vegetation in a rotational grazing system. Agric. Ecosyst. Environ. 202: 243–250.CrossRefGoogle Scholar
  28. Karuczka A. 1999. Idojarasi viszonyok hatasa a szikes talaj somer-legere. Agrokem. Talajtan 48: 459–468.Google Scholar
  29. Kelemen A., Torok P., Valko O., Miglecz T. & Tothmeresz B. 2013. Mechanisms shaping plant biomass and species richness: plant strategies and litter effect in alkali and loess grasslands. J. Veg. Sci. 24: 1195–1203.CrossRefGoogle Scholar
  30. Kiehl K., Eischeid I., Gettner S. & Walter J. 1996. Impact of different sheep grazing intensities on salt-marsh vegetation in northern Germany. J. Veg. Sci. 7: 99–106.CrossRefGoogle Scholar
  31. Kiehl K., Schröder H. & Stock M. 2007. Long-term vegetation dynamics after land-use change in Wadden Sea salt marshes. Coastline Reports 7: 17–24.Google Scholar
  32. Krist V. 1940. Halofytní vegetace jihozápadního Slovenska a Severní části Malé uherské nížiny. Práce Morav. Přír. Společn. 12: 1–100.Google Scholar
  33. Lausi D. & Feoli E. 1979. Hierarchical classification of European salt marsh vegetation based on numerical methods. Plant Ecol. 39: 171–184.CrossRefGoogle Scholar
  34. Lepš J. & Šmilauer P. 2003. Multivariate Analysis of Ecological Data using CANOCO. Cambridge University Press, Cambridge, 269 pp.Google Scholar
  35. Loucougaray G., Bonis A. & Bouzille J.B. 2004. Effects of grazing by horses and/or cattle on the diversity of coastal grasslands in western France. Biol. Cons. 116: 59–71.CrossRefGoogle Scholar
  36. Loste A., Ramos J.J., Ferrer L.M., Climent S. & Latre M.V. 2006. Horner’s syndrome associated with parotid duct obstruction in a sheep. Can. Vet. J. 47: 1208–1209.PubMedPubMedCentralGoogle Scholar
  37. Lysenko T. 2006. Halophytenvegetation im Süd-Osten des eu-ropäischen Teiles Russlands. Institut für Ökologie des Wol-gaeinzugsgebietes der Akademie der Wissenschaften, Togli-atti Russia. URL: https://doi.org/www.digibib.tu-bs.de/?docid=00018800Google Scholar
  38. Marhold K. & Hindak F. 1998. Checklist of non-vascular and vascular plants of Slovakia. Veda, Bratislava, 687 pp.Google Scholar
  39. Marriott C.A., Hood K., Fisher J.M. & Pakeman R.J. 2009. Long-term impacts of extensive grazing and abandonment on the species composition, richness, diversity and productivity of agricultural grassland. Agr. Ecosyst. Environ. 134: 190–200.CrossRefGoogle Scholar
  40. Meirland A., Bouvet A., Rybarczyk H., Dubois F. & Chabrerie O. 2013. Effects of sheep grazing on salt-marsh plant communities in the Bay of Somme (France). Revue D’Ecologie (la Terre et la Vie) 68: 319–333.Google Scholar
  41. Melečková Z., Galvánek D., Dítě D. & Eliáš P.jun. 2013. Effect of experimental top soil removal on vegetation of Pannonian salt steppes. Cent. Eur. J. Biol. 12: 1204–1215.Google Scholar
  42. Melečková, Z., Dítě, D., Eliáš, P.jun. & Galvánek, D. 2014. Succession of inland saline vegetation after a large-scale disturbance. Ann. Bot. Fenn. 51: 285–296.CrossRefGoogle Scholar
  43. Molnár Zs. & Borhidi A. 2003. Hungarian alkali vegetation: Origins, landscape history, syntaxonomy, conservation. Phyto-coenologia 33: 377–408.CrossRefGoogle Scholar
  44. Molnár Zs. 2012. Classification of Pasture Habitats by Hungarian Herders in a Steppe Landscape (Hungary). J. Ethnobiol. Ethnomed. 8: 28.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Mucina L. 1993. Puccinellio-SoMcornieteo,, pp. 522–549. In: Mucina L., Grabherr G. & Ellmauer T. (eds), Die Pflanzenge-sellschaften Österreichs. Teil 1, Anthropogene Vegetation, Fischer, Stuttgart, 578 pp.Google Scholar
  46. Moore H.B. 1966. Marine ecology. John Wiley and Sons Inc., New York, USA, 493 pp.Google Scholar
  47. Nolte S., Esselink P. & Bakker J.P. 2013. Flower production of Aster tripolium, is affected by behavioral differences in livestock species and stocking densities: the role of activity and selectivity. Ecol. Res. 28: 821–831.CrossRefGoogle Scholar
  48. Pavlů V., Hejcman M., Pavlů L., Gaisler J., Nežerková P. & An-daluz M.G. 2005. Vegetation changes after cessation of grazing management in the Jizerske Mountains (Czech Republic). Ann. Bot. Fenn. 42: 343–349.Google Scholar
  49. Ruprecht E., Szabó A., Enyedi M.Z. & Dengler J. 2009. Steppelike grasslands in Transylvania (Romania): characterisation and influence of management on species diversity and composition. Tuexenia 29: 353–368.Google Scholar
  50. Schmidt D. 2007. A Györ környeki szikesek növényzete. Flora Pannonica 5: 95–104.Google Scholar
  51. Seitzinger S.P., Gardner W.S. & Spratt A.K. 1991. The effect of salinity on ammonium sorption in aquatic sediments: Implications for benthic nutrient recycling. Estuaries 14: 157–174.CrossRefGoogle Scholar
  52. Svobodová Z. 1992. K problematike ochrany halofytných bioto-pov v okrese Nitra, pp. 29–36. In: Ambros M. & Sloboda K. (eds), Zborník referátov zo seminára Príroda okresu Nitra a problémy jej ochrany. Okresný úrad životného prostredia, Nitra.Google Scholar
  53. Šumberová K., Novák J. & Sádlo J. 2007. Slaniskové trávníky (Festuco-Puccinellietea), pp. 150–164. In: Chytrý M. (ed.), Vegetace České republiky 1. Academia, Praha.Google Scholar
  54. Teague W.R., Dowhower S.L. & Waggoner J.A. 2004. Drought and grazing patch dynamics under different grazing management. J. Arid. Environ. 58: 97–117.CrossRefGoogle Scholar
  55. ter Braak C.J.F. & Šmilauer P. 1998. CANOCO reference manual and users guide to Canoco for Windows. Software for Canonical Community Ordination (version 4). Centre of Biometry, Wageningen, 351 pp.Google Scholar
  56. Tóth E., Deák B., Valkó O., Kelemen A., Miglécz T., Tóthmérész B. & Török P. 2016. Livestock type is more crucial than grazing intensity: Traditional cattle and sheep grazing in short-grass steppes. Land Degradation & Development, DOI:  https://doi.org/10.1002/ldr.2514Google Scholar
  57. Török P., Valkó O., Deák B., Kelemen A. & Tóthmérész B. 2014. Traditional Cattle Grazing in a Mosaic Alkali Landscape: Effects on Grassland Biodiversity along a Moisture Gradient. PLoS ONE 9(5): e97095. doi:10.1371/journal.pone.0097095PubMedPubMedCentralCrossRefGoogle Scholar
  58. Török P., Valkó O., Deák B., Kelemen A., Tóth E. & Tóthmérész B. 2016. Managing for species composition or diversity? Pastoral and free grazing systems in alkali steppes. Agric. Ecosyst. Environ, (in press).Google Scholar
  59. Vassilev K., Pedashenko H., Nikolov S.C., Apostolova I. & Dengler J. 2011. Effect of land abandonment on the vegetation of upland semi-natural grasslands in the Western Balkan Mts., Bulgaria. Plant Biosyst. 145: 654–665.CrossRefGoogle Scholar
  60. Werger M.J.A., van der Aart P.J.M, During H.J. & Verhoeven J.T.A. (eds) 1988. Plant form and vegetation structure: adaptation, plasticity and relation to herbivory. SPB Academic Pub., The Hague, 356 pp.Google Scholar

Copyright information

© Slovak Academy of Sciences 2016

Authors and Affiliations

  • Zuzana Dítětová
    • 1
    Email author
  • Daniel Dítě
    • 1
  • Pavol Eliášjun.
    • 2
  • Dobromil Galvánek
    • 1
  1. 1.Institute of Botany, Slovak Academy of SciencesBratislavaSlovakia
  2. 2.Department of BotanySlovak University of AgricultureNitraSlovakia

Personalised recommendations