Advertisement

Biologia

, Volume 70, Issue 12, pp 1648–1654 | Cite as

Comparison of the anatomical arrangement of the branches arising from the descending aorta in rabbit (Oryctolagus cuniculus f. domestica) and European hare (Lepus europaeus)

  • David Mazensky
  • Slavka FlesarovaEmail author
  • Vladimír Kuzma
  • Peter Supuka
Section Zoology

Abstract

The aim of the study was to describe the possible anatomical variations in origin of the branches arising from the descending aorta in rabbit and hare. The study was carried out on ten adult rabbits and ten adult European hares. The study was carried out using the corrosion technique. After the euthanasia, the vascular network was perfused with saline. Spofacryl Dental © was used as a casting medium. After polymerisation of the medium, the maceration was carried out in KOH solution. We found high variability in origin of the branches arising from the descending aorta in both species. The variations in the level of the origin of the celiac artery, cranial mesenteric artery, renal arteries, ovarian arteries, testicular arteries and caudal mesenteric artery were present between both species and within the same species. In some individuals of both species, variations in the level and the arrangement of the origin of the dorsal intercostal arteries, lumbar arteries and median sacral artery were present. According to our results, it can be concluded that the anatomical arrangement of branches of descending aorta shows a higher number of variations in domesticated rabbit in comparison with the hare.

Key words

corrosion descending aorta European hare rabbit variation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abidu-Figueiredo M., Dias G.P., Cerutti S., Carvalho-De-Souza B., Maia R.S. & Babinski M.A. 2005. Variations of celiac artery in dogs: Anatomic study for experimental, surgical and radiological practice. Int. J. Morphol. 23 (1): 37–42. DOI:  https://doi.org/10.4067/S0717-95022005000100007/Google Scholar
  2. Abidu-Figueiredo M., Xavier-Silva B., Cardinot T.M., Babinski M.A. & Chagas M.A. 2008. Celiac artery in New Zealand rabbit: Anatomical study of its origin and arrangement for experimental research and surgical practice. Pesq. Vet. Bras. 28 (5): 237–240. DOI:  https://doi.org/10.1590/S0100-736X2008000500002/Google Scholar
  3. Ahasan A.S.M.L., Islam M.S., Kabria A.S.M.G., Rahman M.L., Hassan M.M. & Uddin M. 2012. Major variation in branches of the abdominal aorta in New Zealand white rabbit (Oryctolagus cuniculus). Int. J. Nat. Sci. 2 (4): 91–98. DOI:  https://doi.org/10.3329/ijns.v2i4.13218Google Scholar
  4. Bednarova Z. & Malinovsky L. 1986. Ramification of celiac artery in the domestic cat. Folia Morphol. 34 (1): 36–44.Google Scholar
  5. Brudnicki W., Kirkiłło-Stacewicz K., Skoczylas B., Nowicki W., Jablonski R., Brudnicki A. & Wach J. 2015. The arteries of the brain in hare (Lepus europaeus Pallas, 1778). Anat. Rec. (Hoboken) 298 (10): 1774–1779. DOI:  https://doi.org/10.1002/ar.23176.Google Scholar
  6. Dabanoglu I. 2000. A quantitative study of the aorta of the New Zealand rabbit (Oryctolagus cuniculus L). Anat. Histol. Embryol. 29 (3): 145–147. DOI:  https://doi.org/10.1046/J.1439-0264.2000.00252.xPubMedGoogle Scholar
  7. Dawson T.H. 2001. Similitude in the cardiovascular system of mammals. J. Exp. Biol. 204 (3): 395–407.Google Scholar
  8. Ding Y.H., Dai D.L., Kennith F.L., Debra A., Danielson M.A., Kadirvel R., Cloft H.J. & Kallmes D.F. 2006. Vascular anatomic variation in rabbits. J. Vasc. Interv. Radiol. 17 (6): 1031–1035. DOI:  https://doi.org/10.1097/01.RVI.0000220677.34695.29PubMedGoogle Scholar
  9. Douglas C.G. & Hossler F.E. 1995. Vascular anatomy of the rabbit ureter. Anat. Rec. 242 (1): 47–56. DOI:  https://doi.org/10.1002/ar.l09 2420107PubMedGoogle Scholar
  10. Dugat D., Rochat M., Ritchey J. & Payton M. 2011. Quantitative analysis of the intramedullary arterial supply of the feline tibia. Vet. Comp. Orthop. Traumatol. 24 (5): 313–319. DOI:  https://doi.org/10.3415/VCOT-11-02-0025PubMedGoogle Scholar
  11. Holt J.P., Rhode E.A., Holt W.W. & Kines H. 1981. Geometric similarity of aorta, venae cavae, and certain of their branches in mammals. Am. J. Physiol. 241 (1): 100–104. PMID: 7246796Google Scholar
  12. Koirala S. & Baral P. 2012. A series of study of anatomic variation on arterial system. WebmedCentral Anatomy. 3 (6): WMC003513. DOI:  https://doi.org/10.9754/journal.wmc.2012.003513Google Scholar
  13. Krotscheck U., Adin CA., Hunt G.B., Kyles A.E. & Erb H.N. 2007. Epidemiologic factors associated with the anatomic location of intrahepatic portosystemic shunts in dogs. Vet. Surg. 36 (1): 31–36. DOI:  https://doi.org/10.1111/j.1532-950X.2007.00240.xPubMedGoogle Scholar
  14. Mazensky D. & Flesarova S. 2014. The arterial blood supply to the cervical spinal cord in European hare. Biologia 70 (3): 406–410. DOI:  https://doi.org/10.1515/biolog-2015-0038Google Scholar
  15. Mechirova, E., Zacharias, L., Jalc, P. & Domorakova, I. 1999. Spinal cord white matter injury after single and repeated ischaemia/reperfusion observed by a light microscope. Biologia 54 (Suppl. 6): 163–167.Google Scholar
  16. Mierzwa J. 1975. The arterial system of the kidneys in the rabbit. Folia Morphol. 34 (4): 407–418.Google Scholar
  17. Popesko P., Rajtova V. & Horak J. 1990. Atlas anatómie malých laboratórnych zvierat I. [Anatomic atlas of small laboratory animals I. 1st ed.]. Priroda, Bratislava, 255 pp. ISBN: 8007000410Google Scholar
  18. Rajtova V. & Danko J. 2001. Vasculature of testis, epididymis and ductus deferens of rabbit. The Arteries. Acta Vet. (Brno) 70 (1): 3–7. DOI:  https://doi.org/10.2754/avb200170010003Google Scholar
  19. Sanchez H.L., Silva L.B., Rafasquino M.E., Mateo A.G., Zuccolilli G.O., Portiansky E.L. & Alonso C.R. 2012. Anatomical study of the forearm and hand nerves of the domestic cat (Felis coins), puma (Puma concolor) and jaguar (Panthern onca). Anat. Histol. Embryol. 42 (2): 99–104. DOI:  https://doi.org/10.1111/j.1439-0264.2012.01170.xPubMedGoogle Scholar
  20. Saunders A.B., Winter R.L., Griffin J.F., Thieman K.M. & Miller M.W. 2013. Surgical management of an aberrant left subclavian artery originating from a left patent ductus arteriosus in a dog with a right aortic arch and abnormal branching. J. Vet. Cardiol. 15 (2): 153–159. DOI:  https://doi.org/10.1016/j.jvc.2013.02.004PubMedGoogle Scholar
  21. Shively M.J. & Stump J.E. 1975. The systemic arterial pattern of the guinea pig: the abdomen. Anat. Rec. 182 (3): 355–366. DOI:  https://doi.org/10.1002/ar.1091820309 PMID: 1155805PubMedGoogle Scholar
  22. Swindle M.M., Smith A.C. & Hepburn B.J.S. 1988. Swine as models in experimental surgery. J. Invest. Surg. 1 (1): 65–79. DOI:  https://doi.org/10.3109/08941938809141077PubMedGoogle Scholar
  23. Uddin M., Rahman M.L., Alim M.A. & Ahasan A.S.M.L. 2012. Anatomical study on origin, course and distribution of cranial and caudal mesenteric arteries in the White New Zealand rabbit (Oryctolagus cuniculus). Int. J. Nat. Sci. 2 (2): 54–59. DOI:  https://doi.org/10.3329/ijns.v2i2.11386Google Scholar
  24. Zamir M., Wrigley S.M. & Langille B.L. 1983. Arterial bifurcations in the cardiovascular system of a rat. J. Gen. Physiol. 81 (3): 325–335. DOI:  https://doi.org/10.1085/jgp.81.3.325PubMedGoogle Scholar

Copyright information

© Slovak Academy of Sciences 2015

Authors and Affiliations

  • David Mazensky
    • 1
  • Slavka Flesarova
    • 1
    Email author
  • Vladimír Kuzma
    • 1
  • Peter Supuka
    • 2
  1. 1.Department of Anatomy, Histology and PhysiologyUniversity of Veterinary Medicine and PharmacyKošiceSlovakia
  2. 2.Department for Breeding and Disease of Game and FishUniversity of Veterinary Medicine and PharmacyKošiceSlovakia

Personalised recommendations