, Volume 70, Issue 12, pp 1606–1613 | Cite as

Formation of radial symmetric needle-like rosette leaves in Arabidopsis

  • Jiang-Ping Song
  • Da-Hui Liu
  • Yi-Bo WangEmail author
  • Ya-Na ShiEmail author
Section Botany


In the bodies of seed plants, lateral organs of the shoot, for example cotyledons, leaves, and floral organs, are determinate and exhibit localized planer growth resulting in breaking of radial symmetry and asymmetric development. Localized planer growth in the leaf generates the leaf blade, the principle site of photosynthesis in most plants. Development of flat and expanded lamina is an important physiological process. In these processes, a few kind of meristems cooperate with regulating leaf development. In this work, with transfer sense ASL11, sense ASL38 and antisense ASL15 under 35S promoter to to Arabidopsis (Col-0), we found a series of radial symmetric needle-like rosette leaves. By analyzing the anatomical and the epidermal cell features, our data suggests that in these malformed leaf blades, a few meristem tissues all can be suppressed or accelerated, and normal leaf blade morphology disappears. Pro ASL11:GUS expression further suggests that this process may be triggered by misexpression of a few transcription factors (Tfs).

Key words

Arabidopsis ASYMMERTIC LEAVES2-LIKE15 (ASL15/LBD17) gene ASL11/LBD15 gene ASL38/ LBD41 gene meristem tissues radial symmetric needle-like rosette leaves 



reverse transcription PCR


transcription factors




shoot apical meristems


neomycin phosphotransferase II


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersson J., Walters R.G., Horton P. & Jansson S. 2001. Anti-sense inhibition of the photosynthetic antenna proteins CP29 and CP26: implications for the mechanism of protective energy dissipation. Plant Cell 13: 1193–1204.CrossRefGoogle Scholar
  2. Avery G.S. Jr. 1933. Structure and development of the tobacco leaf. Am. J. Bot. 20: 565–592.CrossRefGoogle Scholar
  3. Bechtold N. & Pelletier G. 1998. In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. Methods Mol. Biol 82: 259–266.PubMedGoogle Scholar
  4. Borghi L., Bureau M. & Simon R. 2007. Arabidopsis JAGGED LATERAL ORGANS is expressed in boundaries and coordinates KNOX and PIN activity. Plant Cell 19: 1795–1808.CrossRefGoogle Scholar
  5. Bowman J.L., Eshed Y. & Baum S.F. 2002. Establishment of polarity in angiosperm lateral organs. Trends Genet 18: 134–141.CrossRefGoogle Scholar
  6. Chalfun-Junior A., Franken J., Mes J.J, Marsch-Martinez N., Pereira A. & Angenent G.C. 2005. ASYMMETRIC LEAVES2- LIKE1 gene, a member of the AS2/LOB family, controls proximaldistal patterning in Arabidopsis petals. Plant Mol. Biol. 57: 559–575.CrossRefGoogle Scholar
  7. Chen R.Z., Zhao X., Shao Z., Wei Z., Wang Y.Y., Zhu L.L., Zhao J., Sun M.X., He R.F, He G.C. 2007. Rice UDP-glucose pyrophosphorylasel is essential for pollen callose deposition and its cosuppression results in a new type of thermosensitive genie male sterility. Plant Cell 19: 847–861.CrossRefGoogle Scholar
  8. Cusset G. 1986. La morphogenese du limbe des Dicotyledones. Can. J. Bot. 64: 2807–2839.CrossRefGoogle Scholar
  9. Ecker J.R. & Davis R.W. 1986. Inhibition of gene expression in plant cells by expression of antisense RNA. Proc. Natl. Acad. Sci. USA 83: 372–5376.CrossRefGoogle Scholar
  10. Emery J.F., Floyd S.K., Alvarez J., Eshed Y., Hawker N.P, Izhaki A., Baum S.F. & Bowman J.L. 2003. Radial patterning of Arabidopsis shoots by Class III HD-ZIP and KANADI genes. Curr. Biol 13: 1768–1774.CrossRefGoogle Scholar
  11. Foster A.S. 1936. Leaf differentiation in angiosperms. Bot Rev 2: 349–372.CrossRefGoogle Scholar
  12. Ganeteg U., Strand Å., Gustafsson P. & Jansson S. 2001. Theroperties of the chlorophyll a/b-binding proteins Lhca2 and Lhca3 studied in vivo using antisense inhibition. Plant Physiology 127: 150–158.CrossRefGoogle Scholar
  13. Guo X.H., Deng K.Q., Wang J., Yu D.S., Zhao Q. & Liu X.M. 2010. Mutational analysis of Arabidopsis PP2CA2 involved in abscisic acid signal transduction. Mol Biol Rep 37: 763–769.CrossRefGoogle Scholar
  14. Ha C.M., Jun J.H., Nam H.G. & Fletcher J.C. 2007. BLADE-ON-PETIOLE1 and 2 control Arabidopsis lateral organ fate through regulation of LOB domain and adaxial-abaxial polarity genes. Plant Cell 19: 1809–1825.CrossRefGoogle Scholar
  15. Hamilton A.J., Lycett G.W. & Grierson D. 1990. Antisense gene that inhibits synthesis of the hormone ethylene in transgenic plants. Nature 346: 284–287.CrossRefGoogle Scholar
  16. Huang W., Pi L., Liang W., Xu B., Wang H., Cai R. & Huang H. 2006. The proteolytic function of the Arabidopsis 26S proteasome is required for specifying leaf adaxial identity. Plant Cell 18: 2479–2492.CrossRefGoogle Scholar
  17. Joshi P.C. & Ball E. 1968. Growth of isolated palisade cells of Arachis hypogaea in vitro. Devi. Biol. 17: 308–325.CrossRefGoogle Scholar
  18. Lin W.C., Shuai B. & Springer P.S. 2003. The Arabidopsis LATERAL ORGAN BOUNDARIES-domain gene ASYMMETRIC LEAVES2 functions in the repression of KNOX gene expression and in adaxial-abaxial patterning. Plant Cell 15: 2241–2252.CrossRefGoogle Scholar
  19. Liu C., Zhang L., Sun J., Luo Y., Wang M.B., Fan Y.L. & Wang L. 2010. A simple artificial microRNA vector based on athmiR169d precursor from Arabidopsis. Mol. Biol. Rep. 37: 903–909.CrossRefGoogle Scholar
  20. Maksymowych R. & Erickson R.O. 1960. Development of the lamina in Xanthium, italicum, represented by the plastochron index. Am. J. Bot. 47: 551–459.CrossRefGoogle Scholar
  21. McHale N.A. 1993. LAM-1 and FAT genes control development of the leaf blade in Nicotiana sylvestris. Plant Cell 5: 1029–1038.CrossRefGoogle Scholar
  22. McHale N.A. & Koning R.E. 2004. PHANTASTICA regulates development of the adaxial mesophyll in Nicotiana leaves. Plant Cell 16: 1251–1262.CrossRefGoogle Scholar
  23. Meng L.S., Ding W.Q., Hu X. & Wang C.Y. 2009. Transformation of PttKNl gene to cockscomb. Acta Physiol. Plant. 31: 683–691.CrossRefGoogle Scholar
  24. Meng L.S. 2015. Transcription coactivator Arabidopsis ANGUS-TIFOLIA3 modulates anthocyanin accumulation and light-induced root elongation through transrepression of Constitutive Potomorphogenicl. Plant Cell. Envir. 38: 838–851.CrossRefGoogle Scholar
  25. Meng L.S. & Yao S.Q. 2015. Transcription co-activator Arabidopsis ANGUSTIFOLIA3 (AN3) regulates water-use efficiency and drought tolerance by modulating stomatal density and improving root architecture by the transrepression of YODA (YDA). Plant Biotechnol. J. 13: 893–902.CrossRefGoogle Scholar
  26. Meng L.S., Wang Y.B., Yao S.Q. & Liu A. 2015a. Arabidopsis AINTEGUMENTA (ANT) Mediates Salt Tolerance by Trans-repressing SCABP8. J. Cell Sci. 128: 2919–2927.CrossRefGoogle Scholar
  27. Meng L.S., Wang Z.B., Yao S.Q. & Liu A. 2015b. Seedlings of large-seeded plants are considered to withstand drought stresses efficiently. J. Cell Sci. 128: 3922–3932. doi:10.1242/jcs.171207.CrossRefGoogle Scholar
  28. Oeller P.W., Min-Wong L., Taylor L.P., Pike D.A, & Theologis A. 1991. Reversible inhibition of tomato fruit senescence by antisense RNA. Science 254: 437–439.CrossRefGoogle Scholar
  29. Okushima Y., Fukaki H., Onoda M., Theologis A. & Tasaka M. 2007. ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. Plant Cell 19: 118–130.CrossRefGoogle Scholar
  30. Ori N., Eshed Y., Chuck G., Bowman J.L. & Hake S. 2000. Mechanisms that control knox gene expression in the Arabidopsis shoot. Development 127: 5523–5532.PubMedGoogle Scholar
  31. Rothstein S.J, DiMaio J., Strand M. & Rice D. 1987. Stable and heritable inhibition of the expression of nopaline synthase in tobacco expressing antisense RNA. Proc. Natl. Acad. Sci. USA 84: 8439–8443.CrossRefGoogle Scholar
  32. Rubin G. Tohge T., Matsuda F., Saito K., Scheible W.R. 2009. Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis. Plant Cell 21: 3567–3584.CrossRefGoogle Scholar
  33. Semiarti E., Ueno Y., Tsukaya H., Iwakawa H., Machida C. & Machida Y. 2001. The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric lamina, establishment of venation and repression of meristem-related homeobox genes in leaves. Development 128: 1771–1783.PubMedGoogle Scholar
  34. Soyano T., Thitamadee S., Machida Y. & Chua N.H. 2008. ASYMMETRIC LEAVES2-LIKE19 /LATERAL ORGAN BOUNDARIES DOMAIN30 and ASL20/LBD18 regulate tracheary element differentiation in Arabidopsis. Plant Cell 20: 3359–3373CrossRefGoogle Scholar
  35. Sun X.D, Meng L.S., Feng Z.H. & Zhu J. 2010. ASYMMETRIC LEAVES2-LIKE11 gene, a member of the AS2/LOB family of Arabidopsis, causes pleiotropic alteration in transgenic cockscomb (Celosio, cristata). Plant Cell Tiss. Organ Cult. 101: 193–200.CrossRefGoogle Scholar
  36. Tsukaya H. 1995. Developmental genetics of leaf morphogenesis in dicotyledonous plants. J. Plant Res. 108: 407–416.CrossRefGoogle Scholar
  37. Van der Krol A.R., Lenting P.E., Veenstra J., Van der Meer I.M, Koes R.E., Gerats A.C.M, Moi J.N.M. & Stuitje A.R. 1988. An anti-sense chalcone synthase gene in transgenic plants inhibits flower pigmentation. Nature 333: 866–869.CrossRefGoogle Scholar
  38. Waites R. & Hudson A. 1995. Phantastica: a gene required for dorsiventrality of leaves in Antirrhinum majus. Development 121: 2143–2154.Google Scholar
  39. Zhang H., Goodman H.M, & Jansson S. 1997. Antisense inhibition of the photosystem I antenna protein Lhca4 in Arabidop-sis thaliana. Plant Physiol 115: 1525–1531.CrossRefGoogle Scholar

Copyright information

© Slovak Academy of Sciences 2015

Authors and Affiliations

  1. 1.Yuanpei CollegeShaoxing UniversityShamingP.R. China
  2. 2.Institute of Medicinal PlantsYunnan Academy of Agricultural SciencesKunmingP.R. China
  3. 3.Shool of Bioengineering and BiotechnologyTianshui Normal UniversityP.R. China

Personalised recommendations