, Volume 70, Issue 11, pp 1528–1536 | Cite as

The effects of tree age and tree species composition on bird species richness in a Central European montane forest

  • Tomáš Birčák
  • Jiří ReifEmail author


Large areas of montane forests are commercially harvested, while some other parts remain unmanaged. These conditions provide an opportunity to study the response of bird communities to forest management. Here we focused on the effects of tree species composition and tree age on bird species richness. We counted birds in two types of montane forest (beech and mixed) replicated in three age classes (managed 55–65 years, managed 85–95 years, unmanaged over 200 years) in the Vtáčnik Mountains, Slovakia. Number of bird species at individual study sites (local richness) was predicted solely by the tree age and not by the forest type. Specifically, the number of species was highest in the oldest stands, while the stands of 55–65 and 85–95 years did not differ from each other. By contrast, forest type seems important for total bird species richness (number of species recorded in all study sites of a given type) with more species recorded in mixed forests than in beech forests. The local richness seems thus limited by the amount resources available at a given site, which is highest in the oldest stands irrespective to forest type, probably due to largest amount of food, dead wood or tree cavities, being particularly suitable for habitat specialists. However, larger species pool in mixed forest, enriched by birds adapted to coniferous trees, increases the total number of species observed in this type. We thus recommend to shift the harvest to the highest possible age and to include some other tree species into parts of beech monocultures.

Key words

diversity bird communities More Individuals Hypothesis species pool forest management primeval conditions habitat specialization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We wish to thank M. Ferenc and an anonymous referee for constructive comments to earlier drafts of this study. J. Vrba kindly drew the map of our study area. The study was supported by the Czech Science Foundation (grant no 14-21715S to JR).


  1. Blondel J. & Mourer-Chauviré C. 1998. Evolution and history of the western Palaearctic avifauna. Trends Ecol. Evol. 1 (2): 488–492. DOI: Scholar
  2. Bose A.K., Schelhaas M.J., Mazerolle M.J. & Bongers F. 2014. Temperate forest development during secondary succession: effects of soil, dominant species and management. Eur. J. Forest Res 1 (2): 511–523. DOI: 10.1007/s10342-014-0781-yCrossRefGoogle Scholar
  3. Castagneri D., Garbarino M., Berretti R. & Motta R. 2010. Site and stand effects on coarse woody debris in montane mixed forests of Eastern Italian Alps. Forest Ecol. Manag. 260 (9). 1592–1598. DOI: 10.1016/j.foreco.2010.08.008CrossRefGoogle Scholar
  4. Clavero M., Brotons L. & Herrando S. 2011. Bird community specialization, bird conservation and disturbance: the role of wildfires. J. Anim. Ecol. 1 (2): 128–136. DOI: 10.1111/j.1365-2656.2010.01748.xCrossRefGoogle Scholar
  5. Crawley M.J. 2007. The R book. John Wiley & Sons, Chichester, 942 pp. ISBN: 978-0-470-51024-7CrossRefGoogle Scholar
  6. Devictor V., Julliard R., Clavel J., Jiguet F., Lee A. & Couvet D. 2008. Functional biotic homogenization of bird communities in disturbed landscapes. Global Ecol. Biogeogr. 1 (2): 252–261. DOI: 10.1111/j.1466-8238.2007.00364.xCrossRefGoogle Scholar
  7. Edenius L. & Elmberg J. 1996. Landscape level effects of modern forestry on bird communities in North Swedish boreal forests. Landscape Ecol. 1 (2): 325–338. DOI: 10.1007/BF02447520CrossRefGoogle Scholar
  8. Ellis E.C., Goldewijk K.K., Siebert S., Lightman D. & Ramankutty N. 2010. Anthropogenic transformation of the biomes. 1700 t. 2000. Glob. Ecol. Biogeogr. 1 (2): 589–606. DOI: 10.1111/j.1466-8238.2010.00540.xGoogle Scholar
  9. Elo M., Roberge J.M., Rajasarkka A. & Mönkkonen M. 2012. Energy density and its variation in space limit species richness of boreal forest birds. J. Biogeogr. 39 (8). 1462–1472. DOI: 10.1111/j.1365-2699.2012.02700.xCrossRefGoogle Scholar
  10. Filippi-Codaccioni O., Devictor V., Bas Y. & Julliard R. 2010. Toward more concern for specialisation and less for species diversity in conserving farmland biodiversity. Biol. Conserv. 143 (6). 1493–1500. DOI: 10.1016/j.biocon.2010.03.031CrossRefGoogle Scholar
  11. Futuyma D.J. & Moreno G. 1988. The evolution of ecological specialization. Ann. Rev. Ecol. Syst. 19: 207–233. DOI: 10.1146/ Scholar
  12. Gaston K.J., Blackburn T.M. & Lawton J.H. 1997. Interspecific abundance-range size relationships: an appraisal of mechanisms. J. Anim. Ecol. 1 (2): 579–601. DOI: 10.2307/5951CrossRefGoogle Scholar
  13. Gaston K.J., Evans K.L. & Lennon J.J. 2007. The scaling of spatial turnover: pruning the thicket, pp. 181–222. In: Storch D., Brown J.H. & Marquet P.A. (eds). Scaling Biodiversity, Ser. Ecological Reviews, Cambridge University Press, Cambridge, 498 pp. ISBN-10. 0521876028, ISBN-13: 978-0521876025Google Scholar
  14. Godet L., Gaüzčre P., Jiguet F. & Devictor V. 2015. Dissociating several forms of commonness in birds sheds new light on biotic homogenization. Glob. Ecol. Biogeogr. 24: 416–426. DOI: 10.1111/geb.12266CrossRefGoogle Scholar
  15. Goncalves-Souza T., Romero G.Q. & Cottenie K. 2013. A critical analysis of the ubiquity of linear local-regional richness relationships. Oikos 1 (2): 961–966. DOI: 10.1111/j.1600-0706.2013.00305.xCrossRefGoogle Scholar
  16. Hawkins B.A., Diniz-Filho J.A.F., Bini L.M., De Marco P. & Blackburn T.M. 2007. Red herrings revisited: spatial autocorrelation and parameter estimation in geographical ecology. Ecography 1 (2): 375–384. DOI: 10.1111/j.0906-7590.2007.05117.xCrossRefGoogle Scholar
  17. Honkanen M., Roberge J.M., Rajasarkka A. & Mönkkonen M. 2010. Disentangling the effects of area, energy and habitat heterogeneity on boreal forest bird species richness in protected areas. Glob. Ecol. Biogeogr. 1 (2): 61–71. DOI: 10.1111/j.1466-8238.2009.00491.xCrossRefGoogle Scholar
  18. Hurlbert A.H. 2004. Species-energy relationships and habitat complexity in bird communities. Ecol. Lett. 1 (2): 714–720. DOI: 10.1111/j.1461-0248.2004.00630.xCrossRefGoogle Scholar
  19. James F.C. & Wamer N.O. 1982. Relationships between temperate forest bird communities and vegetation structure. Ecology 1 (2): 159–171. DOI: 10.2307/1937041CrossRefGoogle Scholar
  20. Jobbagy E.G. & Jackson R.B. 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10: 423–436. DOI:[0423:TVDOSO]2.0.CO;2CrossRefGoogle Scholar
  21. Julliard R., Clavel J., Devictor V., Jiguet F. & Couvet D. 2006. Spatial segregation of specialists and generalists in bird communities. Ecol. Lett. 9 (11). 1237–1244. DOI: 10.1111/j.1461-0248.2006.00977.xPubMedCrossRefPubMedCentralGoogle Scholar
  22. Kampichler C., Angeler D.G., Holmes R.T., Leito A., Svensson S., van der Jeugd H.P. & Wesolowski T. 2014. Temporal dynamics of bird community composition: an analysis of baseline conditions from long-term data. Oecologia 175 (4). 1301–1313. DOI: 10.1007/s00442-014-2979-6PubMedCrossRefPubMedCentralGoogle Scholar
  23. Keil P., Schweiger O., Kühn I., Kunin W.E., Kuussaari M., Settele J., Henle K., Brotons L., Pe’er G., Lengyel S., Moustakas A., Steinicke H. & Storch D. 2012. Patterns of beta diversity in Europe: the role of climate, land cover and distance across scales. J. Biogeogr. 39 (8). 1473–1486. DOI: 10.1111/j.1365-2699.2012.02701.xCrossRefGoogle Scholar
  24. Koleček J., Albrecht T. & Reif J. 2014. Predictors of extinction risk of passerine birds in a Central European country. Anim. Conserv. 1 (2): 498–506. DOI: 10.1111/acv.12117CrossRefGoogle Scholar
  25. Koleček J., Paclík M., Weidinger K. & Reif J. 2010. Početnost a druhové bohatství ptáků ve dvou lužních lesích střední Moravy–možnosti analýzy bodových sčítacích dat [Abundance and species richness of birds in two lowland riverine forests in Central Moravia–possibilities for analysis of pointcount data]. Sylvia 46: 71–85.Google Scholar
  26. Korňan M. 2009. Structure of the breeding bird assemblage of a primeval alderswamp in the Šur National Nature Reserve. Biologia 1 (2): 165–179. DOI: 10.2478/s11756-009-0025-7Google Scholar
  27. Krištín A. & Harvančík S. 1992. K štruktúre a ekológii vtáctva na Vtáčniku. Rosalia 8: 223–232.Google Scholar
  28. Kropil R. 1996. Structure of the breeding bird assemblage of the fir-beech primeval forest in the West Carpathians (Badin nature reserve). Folia Zoologica 1 (2): 311–324.Google Scholar
  29. Kucbel S., Saniga M., Jaloviar P. & Vencurik J. 2012 Stand structure and temporal variability in old-growth beechdominated forests of the northwestern Carpathians: A 40-years perspective. For. Ecol. Manage. 264: 125–133. DOI: 10.1016/j.foreco.2011.10.011CrossRefGoogle Scholar
  30. Laiolo P. 2002. Effects of habitat structure, floral composition and diversity on a forest bird community in north-western Italy. Folia Zool. 1 (2): 121–128.Google Scholar
  31. Laiolo P., Rolando A. & Valsania V. 2004. Responses of birds to the natural reestablishment of wilderness in montane beechwoods of North-western Italy. Acta Oecol. 25 (1–2): 129–136. DOI: 10.1016/j.actao.2003.12.003CrossRefGoogle Scholar
  32. Legendre P. 2014. Interpreting the replacement and richness difference components of beta diversity. Glob. Ecol. Biogeogr. 23 (11). 1324–1334. DOI: 10.1111/geb.12207CrossRefGoogle Scholar
  33. Lemaitre J., Darveau M., Zhao Q. & Fortin D. 2012. Multiscale assessment of the influence of habitat structure and composition on bird assemblages in boreal forest. Biodiv. Conserv. 21 (13). 3355–3368. DOI: 10.1007/s10531-012-0366-3CrossRefGoogle Scholar
  34. Lešo P. & Kropil R. 2014. Breeding bird assemblages of three West Carpathian oak-beech natural forests (eastern Slovakia). Sylvia 50: 66–85.Google Scholar
  35. Le Viol I., Jiguet F., Brotons L., Herrando S., Lindström A., Pearce-Higgins J.W., Reif J., Van Turnhout C. & Devictor V. 2012. More and more generalists: two decades of changes in European avifauna. Biol. Lett. 1 (2): 780–782. DOI: 10.1098/rsbl.2012.0496CrossRefGoogle Scholar
  36. Lomolino M.V., Riddle B.R., Whittaker R.J. & Brown J.H. 2010. Biogeography, Fourth Edition. Sinauer Associates, Sunderland, 560 pp. ISBN: 978-0-87893-494-2Google Scholar
  37. Lukniš M. 1972. Slovensko 2. Priroda. Obzor, Bratislava, 920 pp. ISBN: 65-043-72-IGoogle Scholar
  38. Moning C. & Müller J. 2008. Environmental key factors and their thresholds for the avifauna of temperate montane forests. For. Ecol. Manage. 256 (5). 1198–1208. DOI: 10.1016/j.foreco.2008.06.018CrossRefGoogle Scholar
  39. Moning C. & Müller J. 2009. Critical forest age thresholds for the diversity of lichens, molluscs and birds in beech (Fagus sylvatica L.) dominated forests. Ecol. Indic. 1 (2): 922–932. DOI: 10.1016/j.ecolind.2008.11.002CrossRefGoogle Scholar
  40. Novotny V., Drozd P., Miller S.E., Kulfan M., Janda M., Basset Y. & Weiblen G.D. 2006. Why are there so many species of herbivorous insects in tropical rainforests. Science 313 (5790). 1115–1118. DOI: 10.1126/science.1129237PubMedCrossRefPubMedCentralGoogle Scholar
  41. Paillet Y., Bergès L., Hjältén J., Ódor P., Avon C., Berhnhardt-Römermann M., Bijlsma R-J., De Bruyn L., Furh M., Grandin U., Kanka R., Lundin L., Luque S., Magura T., Matesanz S., Mészáros I., Sebastia M.-T., Schmidt W., Standovár T., Tóthmérész B., Uotila A., Valladares F., Vellak K. & Virtanen R. 2010. Biodiversity differences between managed and unmanaged forests: Meta-analysis of species richness in Europe. Conserv. Biol. 1 (2): 101–112. DOI: 0.1111/j.1523-1739.2009.01399.x.CrossRefGoogle Scholar
  42. Pokorný P. 2011. Neklidné časy. Kapitoly ze společných dějin přírody a lidí. Dokořán, Praha, 370 pp. ISBN: 978-80-7363-392-9Google Scholar
  43. Quinn G.P. & Keough M.J. 2002. Experimental Design and Data Analysis for Biologists. Cambridge University Press, Cambridge, 553 pp. ISBN. 0521009766.9780521009768CrossRefGoogle Scholar
  44. R Development Core Tea. 2010 R. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. ISBN: 3-900051-07-0. Available online at Scholar
  45. Rangel T.F.L.V.B, Diniz-Filho J.A.F & Bini L.M. 2010. SAM: a comprehensive application for Spatial Analysis in Macroecology. Ecography 1 (2): 46–50. DOI: 10.1111/j.1600-0587.2009.06299.xCrossRefGoogle Scholar
  46. Regnery B., Couvet D., Kubarek L., Julien J.F. & Kerbiriou C. 2013. Tree microhabitats as indicators of bird and bat communities in Mediterranean forests. Ecol. Indic. 34: 221–230. DOI: 10.1016/j.ecolind.2013.05.003CrossRefGoogle Scholar
  47. Reif J., Hořák D., Krištín A., Kopsová L. & Devictor V. 2015. Linking habitat specialization with species’ traits in European birds. Oikos: DOI: 10.1111/oik.02276Google Scholar
  48. Reif J., Marhoul P. & Koptík J. 2013. Bird communities in habitats along a successional gradient: Divergent patterns of species richness, specialization and threat. Basic Appl. Ecol. 1 (2): 423–431. DOI: 10.1016/j.baae.2013.05.007CrossRefGoogle Scholar
  49. Reif J., Storch D. & Šímová I. 2008. The effect of scale-dependent habitat gradients on the structure of bird assemblages in the Czech Republic. Acta Ornithol. 1 (2): 197–206. DOI: Scholar
  50. Ricklefs R.E. 2000. The relationship between local and regional species richness in birds of the Caribbean Basin. J. Anim. Ecol. 69 (6). 1111–1116. DOI: 10.1111/j.1365-2656.2000.00456.xCrossRefGoogle Scholar
  51. Šamonil P., Antolík L., Svoboda M. & Adam D. 2009. Dynamics of windthrow events in a natural fir-beech forest in the Carpathian mountains. For. Ecol. Manage. 257 (3). 1148–1156. DOI: 10.1016/j.foreco.2008.11.024CrossRefGoogle Scholar
  52. Šebková B., Šamonil P., Janík D., Adam D., Král K., Vrška T., Hort L. & Unar P. 2011. Spatial and volume patterns of an unmanaged submontane mixed forest in Central Europe: 160 years of spontaneous dynamics. For. Ecol. Manage. 1 (2): 873–885. DOI: 10.1016/j.foreco.2011.05.028CrossRefGoogle Scholar
  53. Seidling W., Travaglini D., Meyer P., Waldner P., Fischer R., Granke O., Chirici G. & Corona P. 2014. Dead wood and stand structure–relationships for forest plots across Europe. iForest 7: 269–281. DOI: 10.3832/ifor1057-007CrossRefGoogle Scholar
  54. Srivastava D.S. & Lawton J.H. 1998. Why more productive sites have more species: An experimental test of theory using tree-hole communities. Am. Nat. 1 (2): 510–529. DOI: 10.1086/286187CrossRefGoogle Scholar
  55. Stein A., Gerstner K. & Kreft H. 2014. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 1 (2): 866–880. DOI: 10.1111/ele.12277CrossRefGoogle Scholar
  56. Webb C.T., Hoeting J.A., Ames G.M., Pyne M.I. & Poff N.L. 2010. A structured and dynamic framework to advance traitsbased theory and prediction in ecology. Ecol. Lett. 1 (2): 267–283. DOI: 10.1111/j.1461-0248.2010.01444.xCrossRefGoogle Scholar
  57. Wesolowski T. 2012. “Lifespan” of non-excavated holes in a primeval temperate forest: A 30 year study. Biol. Conserv. 153: 118–126. DOI: 10.1016/j.biocon.2012.04.017CrossRefGoogle Scholar
  58. Whittaker R.H. 1972. Evolution and measurement of species diversity. Taxon 21 (2/3): 213–251. DOI: 10.2307/1218190CrossRefGoogle Scholar
  59. Willson M.F. & Comet T.A. 1996. Bird communities of northern forests: ecological correlates of diversity and abundance in the understory. Condor 1 (2): 350–362. DOI: 10.2307/1369153CrossRefGoogle Scholar
  60. Yee D.A. & Juliano S. A. 2007. Abundance matters: a field experiment testing the more individuals hypothesis for richnessproductivity relationships. Oecologia 1 (2): 153–162. DOI: 10.1007/s00442-007-0707-1CrossRefGoogle Scholar

Copyright information

© Slovak Academy of Sciences 2015

Authors and Affiliations

  1. 1.Institute for Environmental Studies, Faculty of ScienceCharles University in PraguePraha 2Czech Republic
  2. 2.Department of Zoology and Laboratory of Ornithology, Faculty of SciencePalacký University OlomoucOlomoucCzech Republic

Personalised recommendations