Advertisement

Biologia

, Volume 70, Issue 5, pp 606–614 | Cite as

Cloning and expression analysis of phenylalanine ammonia-lyase (PAL) gene family and cinnamate 4-hydroxylase (C4H) from Dryopteris fragrans

  • Yan Li
  • Lili Sun
  • Hemeng Wang
  • Rui Gao
  • Junzheng Zhang
  • Baozhong HuEmail author
  • Ying ChangEmail author
Section Cellular and Molecular Biology

Abstract

Phenylalanine ammonia-lyase (PAL) and cinnamate 4-hydroxylase (C4H) are the first and second key enzymes of the phenylpropanoid pathway. Systematic analysis of the DfPAL gene family and DfC4H have not been performed in Dryopteris fragrans (L.) Schott. To date, PAL and C4H genes have been less extensively studied in monilophytes than in angiosperms. Here we report the identification of three DfPAL and DfC4H fragments using cDNA cloning and sequencing. Bioinformatics and phylogenetic analyses showed that DfPAL1 and DfPAL2 were quite similar at the amino acid level (94.88%), whereas DfPAL3 was relatively low similar to both of the other paralogs. Some important functional domains were conserved in three DfPAL and DfC4H genes. DfPAL3 and DfC4H were highly expressed in gametophytes and petioles of D. fragrans, DfPAL1 had the highest expression in petioles, and DfPAL2 had low expression in leaves and petioles. Only DfPAL2 and DfC4H were induced with 4°C, 35°C, and UV treatments, but the time responses were different. These results suggest complexity of the DfPAL- and DfC4H-associated metabolic network in D. fragrans. The results provide a basis for elucidating the role of DfPAL and DfC4H genes in the biosynthesis of bioactive compounds.

Key words

Dryopteris fragrans phenylalanine ammonia-lyase cinnamate 4-hydroxylase protein expression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achnine L., Blancaflor E.B., Rasmussen S. & Dixon R.A. 2004. Colocalization of L-phenylalanine ammonia-lyase and cinnamate 4-hydroxylase for metabolic channeling in phenylpropanoid biosynthesis. Plant Cell 16: 3098–3109.CrossRefGoogle Scholar
  2. Ao Z. & Li G. Ferns of Heilongjiang Province. Northeast Forestry University Press, Harbin. 1990. 154 pp.Google Scholar
  3. Bate N.J., Orr J., Ni W., Meromi A., Nadler-Hassar T., Doerner P.W., Dixon R.A., Lamb C.J. & Elkind Y. 1994. Quantitative relationship between phenylalanine ammonia-lyase levels and phenylpropanoid accumulation in transgenic tobacco identifies a rate-determining step in natural product synthesis. Proc. Natl. Acad. Sci. USA 91: 7608–7612.CrossRefGoogle Scholar
  4. Camm E.L. & Towers G. 1973. Phenylalanine ammonia lyase. Phytochemistry 12: 961–973.CrossRefGoogle Scholar
  5. Chang Y. 2009. Progress on research of Dryopteris fragrans (L.) schott in domestic and aboard. Northern Horticulture 4: 113–115.Google Scholar
  6. Dixon R.A. & Paiva N.L. 1995. Stress-induced phenylpropanoid metabolism. Plant Cell 7: 1085–1097.CrossRefGoogle Scholar
  7. Ehlting J., Hamberger B., Million-Rousseau R. & Werck-Reichhart D. 2006. Cytochromes P450 in phenolic metabolism. Phytochem. Rev. 5: 239–270.CrossRefGoogle Scholar
  8. Hahlbrock K. & Scheel D. 1989. Physiology and molecular biology of phenylpropanoid metabolism. Annu. Rev. Plant Biol. 40: 347–369.CrossRefGoogle Scholar
  9. Harakava R. 2005. Genes encoding enzymes of the lignin biosynthesis pathway in Eucalyptus. Genet. Mol. Biol. 28: 601–607.CrossRefGoogle Scholar
  10. Hou X., Shao F., Ma Y. & Lu S. 2013. The phenylalanine ammonia-lyase gene family in Salvia miltiorrhiza: genomewide characterization, molecular cloning and expression analysis. Mol. Biol. Rep. 40: 4301–4310.CrossRefGoogle Scholar
  11. Huang Q., Li W., Fan R. & Chang Y. 2014. New MADS-box gene in fern: cloning and expression analysis of DfMADS1 from Dryopteris fragrans. PLoS On. 9. e86349.CrossRefGoogle Scholar
  12. Kao Y.Y., Harding S.A. & Tsai C.J. 2002. Differential expression of two distinct phenylalanine ammonia-lyase genes in condensed tannin-accumulating and lignifying cells of quaking aspen. Plant Physiol 130: 796–807.CrossRefGoogle Scholar
  13. Kim J., Choi B., Natarajan S. & Bae H. 2013. Expression analysis of kenaf cinnamate 4-hydroxylase (C4H) ortholog during developmental and stress responses. Plant Omics J. 6: 65–72.Google Scholar
  14. Kumar A. & Ellis B.E. 2001. The phenylalanine ammonia-lyase gene family in raspberry. Structure, expression, and evolution. Plant Physiol. 127: 230–239.CrossRefGoogle Scholar
  15. Lange B.M., Lapierre C. & Sandermann H., Jr. 1995. Elicitorinduced spruce stress lignin (structural similarity to early developmental lignins). Plant Physiol. 108: 1277–1287.CrossRefGoogle Scholar
  16. Lepelley M., Mahesh V., McCarthy J., Rigoreau M., Crouzillat D., Chabrillange N., de Kochko A. & Campa C. 2012. Characterization, high-resolution mapping and differential expression of three homologous PAL genes in Coffea canephora Pierre (Rubiaceae). Planta 236: 313–326.CrossRefGoogle Scholar
  17. Li X.J., Wang W., Luo M., Li C.Y., Zu Y.G., Mu P.S. & Fu Y.J. 2012. Solvent-free microwave extraction of essential oil from Dryopteris fragrans and evaluation of antioxidant activity. Food Chem. 133: 437–444.CrossRefGoogle Scholar
  18. Livak K.J. & Schmittgen T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2—ΔΔCT method. Methods 25: 402–408.CrossRefGoogle Scholar
  19. MacDonald M.J. & D’Cunha G.B. 2007. A modern view of phenylalanine ammonia lyase. Biochem. Cell Biol. 85: 273–282.CrossRefGoogle Scholar
  20. Moffitt M.C., Louie G.V., Bowman M.E., Pence J., Noel J.P. & Moore B.S. 2007. Discovery of two cyanobacterial phenylalanine ammonia lyases: kinetic and structural characterization. Biochemistry 46: 1004–1012.CrossRefGoogle Scholar
  21. Olsen K.M., Lea U.S., Slimestad R., Verheul M. & Lillo C. 2008. Differential expression of four Arabidopsis PAL genes; PAL1 and PAL2 have functional specialization in abiotic environmental-triggered flavonoid synthesis. J. Plant Physiol. 165: 1491–1499.CrossRefGoogle Scholar
  22. Pina A. & Errea P. 2008. Differential induction of phenylalanine ammonia-lyase gene expression in response to in vitro callus unions of Prunus spp. J. Plant Physiol. 165: 705–714.CrossRefGoogle Scholar
  23. Raes J., Rohde A., Christensen J.H., Van de Peer Y. & Boerjan W. 2003. Genome-wide characterization of the lignification toolbox in Arabidopsis. Plant Physiol. 133: 1051–1071.CrossRefGoogle Scholar
  24. Rohde A., Morreel K., Ralph J., Goeminne G., Hostyn V., De Rycke R., Kushnir S., Van Doorsselaere J., Joseleau J.P., Vuylsteke M., Van Driessche G., Van Beeumen J., Messens E. & Boerjan W. 2004. Molecular phenotyping of the pal1 and pal2 mutants of Arabidopsis thaliana reveals far-reaching consequences on phenylpropanoid, amino acid, and carbohydrate metabolism. Plant Cell 16: 2749–2771.CrossRefGoogle Scholar
  25. Shang Q.M., Li L. & Dong C.J. 2012. Multiple tandem duplication of the phenylalanine ammonia-lyase genes in Cucumis sativus L. Planta 236: 1093–1105.CrossRefGoogle Scholar
  26. Shi R., Sun Y.H., Li Q., Heber S., Sederoff R. & Chiang V.L. 2010. Towards a systems approach for lignin biosynthesis in Populus trichocarpa: transcript abundance and specificity of the monolignol biosynthetic genes. Plant Cell Physiol. 51: 144–163.CrossRefGoogle Scholar
  27. Singh K., Kumar S., Rani A., Gulati A. & Ahuja P.S. 2009. Phenylalanine ammonia-lyase (PAL) and cinnamat. 4. hydroxylase (C4H) and catechins (flavan-3-ols) accumulation in tea. Funct. Integr. Genomics 9: 125–134.CrossRefGoogle Scholar
  28. Song J. & Wang Z. 2009. Molecular cloning, expression and characterization of a phenylalanine ammonia-lyase gene (Sm- PAL1) from Salvia miltiorrhiza. Mol. Biol. Rep. 36: 939–952.CrossRefGoogle Scholar
  29. Sun Y., Mu F., Li C., Wang W., Luo M., Fu Y. & Zu Y. 2013. Aspidin BB, a phloroglucinol derivative, induces cell cycle arrest and apoptosis in human ovarian HO-8910 cells. Chem. Biol. Interact. 204: 88–97.CrossRefGoogle Scholar
  30. Suzuki S., Nakatsubo T., Umezawa T. & Shimada M. 2002. First in vitro norlignan formation with Asparagus officinalis enzyme preparation. Chem. Commun. (Cambridge) (10): 1088–1089.Google Scholar
  31. Teutsch H.G., Hasenfratz M.P., Lesot A., Stoltz C., Garnier J.M., Jeltsch J.M., Durst F. & Werck-Reichhart D. 1993. Isolation and sequence of a cDNA encoding the Jerusalem artichoke cinnamate 4-hydroxylase, a major plant cytochrome P450 involved in the general phenylpropanoid pathway. Proc. Natl. Acad. Sci. USA 90: 4102–4106.CrossRefGoogle Scholar
  32. Tuan P.A., Park N.I., Li X., Xu H., Kim H.H. & Park S.U. 2010. Molecular cloning and characterization of phenylalanine ammonia-lyase and cinnamate 4-hydroxylase in the phenylpropanoid biosynthesis pathway in garlic (Allium sativum). J. Agric. Food Chem. 58: 10911–10917.CrossRefGoogle Scholar
  33. Wang H.R., Wang R., Xu H.L. & Zhang Y.L. 2008. Analgesic effect of Dryoperis fragrans (L.) schott. Journal of Qiqihar Medical College 29: 2443–2444.Google Scholar
  34. Whitbred J.M. & Schuler M.A. 2000. Molecular characterization of CYP73A9 and CYP82A1 P450 genes involved in plant defense in pea. Plant Physiol. 124: 47–58.CrossRefGoogle Scholar
  35. Widén C.J., Fraser-Jenkins C.R., Reichstein T. & Sarvela J. 2001. A survey of phenolic compounds in Dryopteris and related fern genera. Annales Botanici Fennici 38: 99–138.Google Scholar
  36. Winkel-Shirley B. 1999. Evidence for enzyme complexes in the phenylpropanoid and flavonoid pathways. Physiol. Plant. 107: 142–149.CrossRefGoogle Scholar
  37. Xu H., Park N.I., Li X., Kim Y.K., Lee S.Y. & Park S.U. 2010. Molecular cloning and characterization of phenylalanine ammonia-lyase, cinnamate 4-hydroxylase and genes involved in flavone biosynthesis in Scutellaria baicalensis. Bioresour. Technol. 101: 9715–9722.CrossRefGoogle Scholar
  38. Zeng S., Liu Y., Zou C., Huang W. & Wang Y. 2013. Cloning and characterization of phenylalanine ammonia-lyase in medicinal Epimedium species. Plant Cell Tissue Organ Cult. 113: 257–267.CrossRefGoogle Scholar
  39. Zhu L., Cui W., Fang Y., Liu Y., Gao X. & Zhou Z. 2013. Cloning, expression and characterization of phenylalanine ammonialyase from Rhodotorula glutinis. Biotechnol. Lett. 35: 751–756.CrossRefGoogle Scholar

Copyright information

© Slovak Academy of Sciences 2015

Authors and Affiliations

  1. 1.Laboratory of Plant Research College of Life SciencesNortheast Agricultural UniversityHarbin, HeilongjiangPeople’s Republic of China
  2. 2.School of Food Science and EngineeringHarbin Institute of TechnologyHarbin, HeilongjiangPeople’s Republic of China

Personalised recommendations