, Volume 70, Issue 8, pp 1093–1101 | Cite as

Substrate choice by the alien snail Ferrissia fragilis (Gastropoda: Planorbidae) in an industrial area: A case study in a forest pond (Southern Poland)

  • Aneta SpyraEmail author
  • Małgorzata Strzelec


The aims of this study were to determine the substrate choice by the alien snail Ferrissia fragilis (Tryon, 1863) (Phragmites australis and Typha latifolia remains, Nuphar lutea floating leaves and leaf deposit) as well as the environmental factors that influence the occurrence of this species. From 9 (T. latifolia and P. australis) to 11 (leaf deposit) snail species occurred on each type of substrate. F. fragilis belonged to the eudominants on most of the substrate types. This species reached its highest average density on floating N. lutea leaves (271 ind. m−2) and the lowest was on P. australis (60 ind. m−2). It occurred in different periods during the snail collection: in the initial study period on the floating N. lutea leaves (May) and on P. australis in the final period of the study (September). In July, we found a few specimens in the postseptal form on T. latifolia remains. The results of RDA analysis confirm the association between F. fragilis and T. latifolia as well as with floating N. lutea leaves. F. fragilis occurs at sites that have a higher content of calcium and iron in the water. Alien species more increasingly appear in disturbed anthropogenic water-bodies. An important vector in the dispersion of F. fragilis was probably the water birds or the economic activities that are related with the use of this forest pond. Studies on the occurrence of alien species contribute important data on the activities that are taken to preserve the biodiversity of freshwater environments.

Key words

woodland water bodies freshwater snails non-native species environmental impact leaf deposits 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We would like to thank Ms. Michele L. Simmons, BA from the English Language Centre (ELC), who made final corrections and improved the language of the manuscript. The authors are also deeply indebted to the two anonymous reviewers for their valuable suggestions and comments on this manuscript.


  1. Biesiadka E. & Kowalik W. 1980. Water miters (Hydracarina) of the Western Bieszczady Mountains. I. Stagnant waters. Acta Hydrobiol. (Kraków) 22: 279–298.Google Scholar
  2. Bilton D.T., Freelan J.R. & Okamura B. 2001. Dispersal in freshwater Invertebrates. Annu. Rev. Ecol. Syst. 32: 159–181. DOI: 10.1146/annurev.ecolsys.32.081501.114016CrossRefGoogle Scholar
  3. Blinn D.W., Frutit R. E. & Pickart A. 1989. Feeding ecology and radular morphology of the freshwater limpet Ferrissio, fragilis. J. North Amer. Benthol. Soc. 8 (3): 237–242. DOI: 10.2307/1467327CrossRefGoogle Scholar
  4. Bohonak A.J. & Jenkins D.G. 2003. Ecological and evolutionary significance of dispersal by freshwater invertebrates. Ecol. Lett. 6 (8): 783–796. DOI: 10.1046/j. 1461-0248.2003.00486.xCrossRefGoogle Scholar
  5. Brooks R.T. 2004. Weather-related effects on woodland vernal pool hydrology and hydroperiod. Wetlands 24 (1): 104–114. DOI: 10.1672/0277-5212(2004)024[0104:WEOWVP]2.0.CO;2CrossRefGoogle Scholar
  6. Burks R.L., Mulderij G., Gross E., Jones I., Jacobsen L., Jeppe-sen E. & Van Donk E. 2006. Center stage: the crucial role of macrophytes in regulating trophic interactions in Shallow Lake Wetlands, pp. 37–59. DOI: 10.1007/978-3-540-33189-6.3. In: Bobbink R., Beltman B., Verhoeven J.T.A. & Whigham D.F. (eds), Wetlands: Functioning, Biodiversity Conservation, and Restoration, Series: Ecological Studies 191, 318 pp. ISBN: 978-3-540-33188-9Google Scholar
  7. Cañedo-Argüelles W. & Rieradevall W. 2009. Quantification of environment-driven changes in epiphytic macroinvertebrate communities associated to Phragmites australis. J. Limnol. 68 (2): 229–241. DOI: 10.4081/jlimnol.2009.229CrossRefGoogle Scholar
  8. De Szalay F.A. & Resh V.H. 2000. Factors influencing macroinvertebrate colonization of seasonal wetland responses to emergent plant cover. Freshwater Biol. 45 (3): 295–308. DOI: 10.1111/j.1365-2427.2000.00623.xCrossRefGoogle Scholar
  9. Dillon R.T. Jr. 2000. The Ecology of Freshwater Molluscs. Cambridge University Press, Cambridge, 524 pp. ISBN-10: 052135210X, ISBN-13: 978-0521352109CrossRefGoogle Scholar
  10. Dillon R.T & Herman J.J. 2009. Genetics, shell morphology, and life history of freshwater Pulmonate Limpets Ferrissio, rivu-laris and Ferrissio, fragilis. J. Freshwater Ecol. 24 (2): 261–271. DOI: 10.1080/02705060.2009.9664291CrossRefGoogle Scholar
  11. Fontanarrosa M.S., Chaparro G.N. & O’Farrell I. 2012. Temporal and spatial patterns of macroinvertebrates associated with small and medium-sized free-floating plants. Wetlands 33 (1): 47–63. DOI: 10.1007/sl3157-012-0351-3CrossRefGoogle Scholar
  12. Falkner G. & Von Proschwitz T. 1995. A record of Ferrissio (Pet-tancylus) clessiniana (Jickeli) in Sweden, with remarks on the identity and distribution of the European Ferrissio species. J. Conchol. 36 (3): 39–40.Google Scholar
  13. Früh D., Stoll S. & Haase P. 2012. Physicochemical and morphological degradation of stream and river habitats increases invasion risk. Biol. Invas. 14 (11): 2243–2253. DOI: 10.1007/sl0530-012-0226-9.CrossRefGoogle Scholar
  14. Glöer P. 2002. Süßwassergastropoden Nord-und Mitteleuropas. Die Tierwelt Deutschlands, 73. ConchBooks. Hackenheim, 327 pp. ISBN: 9783925919602Google Scholar
  15. Górny M. & Grüm L. 1981. Metody stosowane wzoologii gleby [Methods used in the soil zoology]. PWN. Warszawa. 482 pp. ISBN: 8301028076, 9788301028077Google Scholar
  16. Hermanowicz W., Dojlido J., Dożańska W., Kosiorowski B. & Zerze J. 1999. Fizyczno-chemiczne badanie wody i ścieków [Physico-chemical surveys of water and sewages]. Arkady, Warszawa, 556 pp. ISBN: 9788321340678Google Scholar
  17. Humpesch U. & Fasel C. 2005. Biodiversity of macrozoobenthos in a large river, the Austrian Danube, including qualitative studies in a free-flowing stretch bellow Vienna: a short review. Freshwater Forum 24: 3–23.Google Scholar
  18. Jatulewicz I. 2007. Comparison of macroinvertebrate communities associated with various habitats in anthropogenic reservoirs, pp. 39–47. In: Pliński M. (ed.), Oceanological and Hydrobi-ological Studies 36 (Suppl. 4), Institute of Oceanography, University of Gdansk.Google Scholar
  19. Kerney M. 1999. Atlas of the Land and Freshwater Molluscs of Britain and Ireland. Harley Books, England, 264 pp. ISBN-10: 0946589488, ISBN-13: 9780946589487Google Scholar
  20. Kornijów R. & Moss B. 1998. Vertical distribution of in-benthos in relation to fish and floating leaved macrophyte population, pp. 227–232. DOI: 10.1007/978-1-4612-0695-8.12. In: Jeppe-sen E., Sondergaard M., Sondergaard M. & Christoffersen M. (eds), The Structuring Role of Submerged Macrophytes in Lakes, Part 2, Ecol. Stud. 131, Springer. ISBN: 978-1-4612-6871-0Google Scholar
  21. Lewin I. & Smoliński A. 2006. Rare and vulnerable species in the mollusc communities in the mining subsidence reservoirs of an industrial area (The Katowicka Upland, Upper Silesia, Southern Poland). Limnologica 36 (3): 181–191. DOI: 10.1016/j.limno.2006.04.002CrossRefGoogle Scholar
  22. Lodge D.M. 1985. Macrophyte-gastropod associations: observation and experiments on macrophyte choice by gastropods. Freshwater Biol. 15 (6): 695–708. DOI: 10.1111/j.1365-2427.1985.tb00243.xCrossRefGoogle Scholar
  23. Lodge D.M. & Kelly P. 1985. Habitat disturbance and the stability of freshwater gastropod population. Oecologia 68 (1): 111–117. DOI: 10.1007/BF00379482PubMedCrossRefGoogle Scholar
  24. Lori E. & Cianfanelii S. 2007. Studio sulla prezenza e distrbuzione di Molluschi terrestri e d’acqua dolce alieni nel territorio della Provincia di Pistoia Relazione finale. Museo di Storia Naturale dell’Universitr degli Studi di Firenze Sezione Zoologica. La Specola, 98 pp.Google Scholar
  25. Meier-Brook C. 2002. What makes en aquatic ecosystem susceptible to mollusk invasion? pp. 405–417. In: Falkner M., Groh K. & Speight M. (eds), Collectanea Malacologica - Festschrift für Gerhard Falkner, ConchBooks, Mackeim, 644 pp. ISBN-10: 3925919619, ISBN-13: 978-3925919619Google Scholar
  26. Mienis H.K. 2002. Various observation concerning Ferrissio clessiniana in North-Holland, North of the North Sea Channel, The Netherlands. Ellipsaria 4 (3): 14–15. EVENTS/ELLIPSARIA2002_43.pdf. (accessed 02.01.2015)Google Scholar
  27. Mouthon J. & Daufresne M.N. 2006. Effects of the 2003 heatwave and climatic warming on mollusc communities of the Saône: a large lowland river and of its two main tributaries (France). Global Change Biology 12 (3): 441–449. DOI: 10.1111/j. 1365-2486.2006.01095.xCrossRefGoogle Scholar
  28. Myślińska E. 2001. Grunty organiczne i laboratoryjne metody ich badania [Organic soils and their laboratory methods]. Wyd. PWN, Warszawa, 208 pp. ISBN: 8301134178, 9788301134174Google Scholar
  29. Oertli B. 1993. Leaf litter processing and energy flow through macroinvertebrates in a woodland pond (Switzerland). Oecologia 96 (4): 466–477. DOI: 10.1007/BF00320503PubMedCrossRefGoogle Scholar
  30. Oertli B. 1995. Spatial and temporal distribution of the zooben-thos community in a woodland pond (Switzerland). Hydrobiologia 300/301 (1): 195–204. DOI: 10.1007/BF00024461CrossRefGoogle Scholar
  31. Oertli B. & Lachavanne J.B. 1995. The effects of shoot age on colonization of an emergent macrophyte (Typha, latifolia) by macroinvertebrates. Freshwater Biol. 34 (3): 421–431. DOI: 10.1111/j.1365-2427.1995.tb00900.xCrossRefGoogle Scholar
  32. Olson E.J., Engstroma E.S., Doeringsfelda M.R. & Beiliga R. 1995. Abundance and distribution of macroinvertebrates in relation to macrophyte communities in a prairie marsh, Swan Lake, Minnesota. J. Freshwater Ecol. 10 (4): 325–335. DOI: 10.1080/02705060.1995.9663455CrossRefGoogle Scholar
  33. Ostrowska A., Gawliński S. & Szczubialka Z. 1991. Metody analizy i oceny właściwości gleb i roślin. Katalog [Methods of an analysis and assessment of soil and plant properties. A Catalogue]. Instytut Ochrony Środowiska, Warszawa, 334 pp.Google Scholar
  34. Piechocki A. (ed.) 1979. Mięczaki (Mollusca): Ślimaki (Gastropoda) [Molluscs (Mollusca): Snails (Gastropoda)]. Fauna Sladkowodna Polski 7, Warszawa, Poznań PWN, 187 pp.Google Scholar
  35. Pip E. & Stweart J. 1976. The dynamics of two aquatic plant-snail associations. Can. J. Zool. 54 (7): 1192–205. DOI: 10.1139/z76-136CrossRefGoogle Scholar
  36. Raposeiro P.M., Costa A.C. & Martins A.F. 2011. On the presence, distribution and habitat of the alien freshwater snail Ferrissia, fragilis (Tryon, 1863) (Gastropoda: Planorbidae) in the oceanic islands of the Azores. Aquat. Invas. 6 (Suppl.1): S13–S17. DOI: 10.3391/ai.2011.6.S1.003CrossRefGoogle Scholar
  37. Richardot M. 1977a. Ecological factors influencing estivation in the freshwater limpet Ferrissio, wautieri (Bassomatophora: Ancylidae). I. Oxygen content, organic matter content and pH of the water. Malacol. Rev. 10: 7–13.Google Scholar
  38. Richardot M. 1977b. Ecological factors influencing estivation in the freshwater limpet Ferrissio, wautieri (Bassomatophora: Ancylidae). II. Photoperiod, light intensity and water temperature. Malacol. Rev. 10: 15–30.Google Scholar
  39. Richardott M. 1978. Ecological factors inducing estivation in the freshwater limpet Ferrissio wauteri (Basommatophora: ancylidae). III Density levels and food supply. General conclusion. Malacol. Rev. 11: 47–58.Google Scholar
  40. Semenchenko V. & Laenko T. 2008. First record of the invasive North American gastropod Ferrissio fragilis (Tyron, 1863) from the Pripyat River basin, Balarus. Aquatic Invas. 3 (1): 80–82. DOI: 10.3301/ai.2008.3.1.12CrossRefGoogle Scholar
  41. Son M.O. 2007. North American freshwater limpet Ferrissio fragilis (Tryon, 1863) (Gastropoda: Planorbidae) - a cryptic invader in the Northern Black Sea Region. Aquat. Invas. 2 (1): 55–58. DOI: Scholar
  42. Spyra A. 2008. The septifer form of Ferrissio wautieri (Mirolli, 1960) found for the first time in Poland. Mollusca (Dresden) 26 (1): 95–98.Google Scholar
  43. Spyra A. 2010. Environmental factors influencing the occurrence of freshwater snails in woodland water bodies. Biologia 65 (4): 697–703. DOI: 10.2478/s11756-010-0063-1CrossRefGoogle Scholar
  44. Spyra A. 2011. Autochthonic and allochthonic plant detritus as zoobenthos habitat in anthropogenic woodland ponds. Oceanol. Hydrol. Stud. 40 (1): 27–35. DOI: 10.2478/sl3545-011-0004-9Google Scholar
  45. Spyra A. & Strzelec M. 2014. Identifying factors linked to the occurrence of alien species in isolated woodland ponds. Natur-wisenschaften 101 (3): 229–239. DOI: 10.1007/s00114-014-1153-7CrossRefGoogle Scholar
  46. Strayer D.L., Lutz C, Malcom H.M., Munger K. & Shaw W.H. 2003. Invertebrate communities associated with a native (Vallisneria americana) and an alien (Tropa notons) macrophyte in a large river. Freshwater Biol. 48 (11): 1938–1949. DOI: 10.1046/j. 1365-2427.2003.01142.xCrossRefGoogle Scholar
  47. Strayer D.L. 2010. Alien species in fresh waters: ecological effects, interactions with other stressors, and prospects for the future. Freshwater Biol. 55 (Suppl. si): 152–174. DOI: 10.1111/j.1365-2427.2009.02380.xCrossRefGoogle Scholar
  48. Strzelec M. 2005. The settlement of anthropogenic water-bodies of Silesia by Ferrissio, clessiniana (Jickeli). Malacologica Bo-hemoslovaca 4: 5–9.Google Scholar
  49. Tagliapietra D. & Sigovini M. 2010. Benthic fauna: collection and identification of macrobenthic invertebrates, pp. 253–261. In: NEAR Curriculum in Natural Environmental Science Terre et Environment, Vol. 88. ISBN: 2-940153-87-6Google Scholar
  50. Ter Braak C.J.F. & Šmilauer P. 2002. CANOCO Reference manual and CanoDraw for Windows User’s Guide: Soft-ware for Canonical Community Ordination (version 4.5). New York: Microcomputer Power Ithaca NY, USA, 500 pp.Google Scholar
  51. Thomaz S.M. & Ribeiro da Cunha E. 2010. The role of macro-phytes in habitat structuring in aquatic ecosystems: methods of measurement, causes and consequences on animal assemblages composition and biodiversity. Acta Limnol. Brasil. 22 (2): 218–236. DOI: Scholar
  52. Tokinova R. P. 2012. The first finding of the North American freshwater limpets Ferrissio fragilis (Tryon, 1863) (Mollusca, Gastropoda) in the Middle Volga Basin. Rus. J. Biol. Invas. 3 (1): 52–55. DOI: 10.1134/S2075111712010134CrossRefGoogle Scholar
  53. Walther A.C., Lee T., Burch J.B. & Foighil D.O. 2006. Confirmation that the North American ancylid Ferrissia fragilis (Tyron, 1863) is a cryptic invader of European and East Asian freshwater ecosystem. J. Moll. Stud. 72 (3): 318–321. DOI: 10.1093/mollus/ey1009CrossRefGoogle Scholar
  54. Waters N.M. & Giovanni C.R. 2002. Distribution and diversity of benthic macroinvertebrates associated with aquatic macrophytes. J. Freshwater Ecol. 17 (2): 223–232. DOI: 10.1080/02705060.2002.9663890CrossRefGoogle Scholar
  55. Watkins CE., Shireman J.V & Haller W.T. 1983. The influence of aquatic vegetation upon zooplankton and benthic macroinvertebrates in Orange Lake, Florida. J. Aquat. Plant Manage. 21: 78–83.Google Scholar
  56. Weatherhaed M.A. & James M.R. 2001. Distribution of macroinvertebrates in relation to physical and biological variables in the littoral zone of mine New Zealand Lakes. Hydrobiologia 462 (1-2): 115–129. DOI: 10.1023/A:1013178016080CrossRefGoogle Scholar
  57. Zealand A.M. & Jefferiess M.J. 2009. The distribution of pond snail communities across a landscape: separating out the influence of spatial position from local habit quality for ponds in south-east Northumberland, U.K. Hydrobiologia 632 (1): 177–187. DOI: 10.1007/s10750-009-9837-2CrossRefGoogle Scholar
  58. Żbikowski J., Kobak J. & Żbikowska E. 2010. Is Nuphar lutea (L.) Sm. a structuring factor for macrozoobenthos and selected abiotic parameters of water and bottom sediments throughout the year? Aquat. Ecol. 44 (4): 709–713. DOI: 10.1007/s10452-009-9309-9CrossRefGoogle Scholar

Copyright information

© Slovak Academy of Sciences 2015

Authors and Affiliations

  1. 1.Department of HydrobiologyUniversity of SilesiaKatowicePoland

Personalised recommendations