, Volume 70, Issue 8, pp 1078–1092 | Cite as

Phylogenetic utility of the geometric model of the body form in leeches (Clitellata: Hirudinida)

  • Joanna M. CichockaEmail author
  • Aleksander Bielecki


Architectonics of the leech body constitute a source of promorphological characters which have been used for modeling. A geometric model of the leech body form was applied in a phylogenetic analysis for the estimation of the utility of morphometric data in the reconstruction of the history of Hirudinida. A cladistic analysis included species representing all main ecological groups of leeches. In the analysis the morphometric data were used as non-discretized mean values and as mean values coded with the gap-weighting method. Obtained phylogenetic trees were compared with cladograms generated based on combined data sets including discrete qualitative morphological characters as well as known molecular phylogenies of leeches. The study demonstrates that the morphometric characters provide additional evidence for the confirmation of monophyletic groups within Hirudinida. Thus, the morphometric data resulting from the geometric model of the leech body form appeared to be applicable for the reconstruction of leech phylogeny.

Key words

phylogenetic analysis morphometric data body form gapweighting leech Hirudinida 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We specially thank Dr Jolanta Szlachciak for her comments that improved the quality of this study, and two anonymous reviewers for providing suggestions that helped us to correct the manuscript. We also thank all researches who lent or gave us many leech specimens difficult to collect.


  1. Aguilar-Medrano R., Frédérich B., de Luna E. & Balart E.F. 2011. Patterns of morphological evolution of the cephalic region in damselfishes (Perciformes: Pomacentridae) of the Eastern Pacific. Biol. J. Linn. Soc. Lond. 102 (3): 593–613. DOI: 10.1111/j.1095-8312.2010.01586.xCrossRefGoogle Scholar
  2. Apakupakul K., Siddall M.E. & Burreson E.M. 1999. Higher level relationships of leeches (Annelida: Clitellata: Euhirudinea) based on morphology and gene sequences. Mol. Phylogen. Evol. 12 (3): 350–359. DOI: 10.1006/mpev.1999.0639CrossRefGoogle Scholar
  3. Bielecki A. 1997. Fish leeches of Poland in relation to the Palearctic piscicolines (Hirudinea: Piscicolidae: Piscicolinae). Genus 8 (2): 223–378.Google Scholar
  4. Bielecki A., Cichocka J.M., Jelen I., Swiatek P., Plachno B.J. & Pikula D. 2013a. New data about the functional morphology of the chaetiferous leechlike annelids Acanthobdella peledino, Grube, 1851 and Paracanthobdella livanowi (Epshtein, 1966) (Clitellata, Acanthobdellida). J. Morph. 275 (5): 528–539. DOI: 10.1002/jmor.20235Google Scholar
  5. Bielecki A., Cichocka J.M., Swiatek P. & Gorzel M. 2013b. A new leech species (Clitellata: Hirudinida: Piscicolidae) from the Lyna River near Olsztyn, Poland. J. Parasitol. 99 (3): 467–474. DOI: 10.1645/GE-3154.1PubMedCrossRefPubMedCentralGoogle Scholar
  6. Bielecki A., Cios S., Cichocka J.M. & Pakulnicka J. 2012. Piscicola siddalli n. sp., a leech species from the United Kingdom (Clitellata: Hirudinida: Piscicolidae). Comp. Parasitol. 79 (2): 219–230. DOI: Scholar
  7. Bielecki A. & Epshtein V.M. 1994. The theory of biological systematics and phylogeny reconstruction. Justification of the theory and systematisťs work within the area of description. Genus 5 (4): 411–421.Google Scholar
  8. Bielecki A., Palińska K. & Cichocka J. 2009. Body form of leeches (Hirudinida: Piscicolidae) parasiting on fishes. Wiad. Parazytol. 55 (4): 359–365. PMID: 20209809PubMedPubMedCentralGoogle Scholar
  9. Bielecki A., Palińska K., Cichocka J.M., Beenen R., Jelen I. & AdamiakBrud Z. 2011. New information on the geographical distribution of Piscicolo, brylinskae Bielecki, 2001 (Hirudinea: Piscicolidae) in Poland and remarks on its systematic position. Biologia 66 (4): 654–661. DOI: 10.2478/sll 756-011-0071-9CrossRefGoogle Scholar
  10. Bielecki A. & Polok K. 2012. Genetic variation and species identi fication among selected leeches (Hirudinea) revealed by RAPD markers. Biologia 67 (4): 721–730. DOI: 10.2478/sll 756-012-0063-4Google Scholar
  11. Bielecki A., Swiatek P., Cichocka J.M., Siddall M.E., Urbisz A. & Plachno B.J. 2013c. Diversity of features of the female reproductive system and other morphological characters in leeches (Clitellata, Hirudinida) in phylogenetic conception. Cladistics 30:540–554. DOI: 10.1111/cla.l2058CrossRefGoogle Scholar
  12. Borda E. & Siddall M.E. 2004. Arhynchobdellida (Annelida: Oligochaeta: Hirudinida): phylogenetic relationships and evolution. Mol. Phylogen. Evol. 30 (1): 213–225. DOI: 10.1016/j.ympev.2003.09.002CrossRefGoogle Scholar
  13. Chappill J.A. 1989. Quantitative characters in phylogenetic analysis. Cladistics 5: 217–234. DOI: 10.1111/j.1096-0031.1989. tb00487CrossRefGoogle Scholar
  14. Cichocka J.M. & Bielecki A. 2014. Metodologiczne uzasadnienie filogenetyki morfologie znej na przykladzie pijawek (Clitellata: Hirudinida) [Methodological background for morphological phylogenetics on the example of leeches (Clitellata: Hirudinida)], pp. 148-155. In: Kuczera M. (ed.), Wplyw Mlodych Naukowców na Osiątgnięcia Polskiej Nauki, 5 ed., Materialy Konferencji Mlodych Naukowców, Metodologia badań, Zakopane. ISBN: 978-83-63058-38-8Google Scholar
  15. Cichocka J.M., Bielecki A. & Pikula D. 2014. Filogeneza pijawek (Clitellata: Hirudinida) w oparciu o cechy morfologiezne [Phylogeny of leeches (Clitellata: Hirudinida) based on morphometric characters]. Dokonania Mlodych Naukowców 2: 33–39.Google Scholar
  16. Cranston P. & Humphries C. 1988. Cladistics and computers: a chironomid conundrum? Cladistics 4 (1): 72–92. DOI: 10.1111/j.1096-0031.1988.tb00469.xCrossRefGoogle Scholar
  17. de Bivort B.L., Clouse R.M. & Giribet G. 2010. A morphometrics based phylogeny of the temperate Gondwanan mite harvestmen (Opiliones, Cyphophthalmi, Pettalidae). J. Zool. Syst. Evol. Res. 48: 294–309. DOI: 10.1111/j.1439-0469.2009.00562.xCrossRefGoogle Scholar
  18. D’Hondt C., Schols P., Huysmans S. & Smets E. 2004. Systematic relevance of pollen and orbicule characters in the tribe Hillieae (Rubiaceae). Bot. J. Linn. Soc. 146 (3): 303–321. DOI: 10.1111/j.1095-8339.2004.00336.xCrossRefGoogle Scholar
  19. Epshtein V.M. 1969. Revizja rodov Piscicola i Cystobranchus (Hirudinea, Piscicolidae). Problemy parazitologii: Trudi VI Nauch. Konf. Parazitol. YCCP. Kiev 2: 286–287.Google Scholar
  20. Epshtein V.M. 1989. Shchetinkonosnye, cherepaslťi i ryb’i piyavki mirovoy fauny (Sistemnyi podhod k klassi fikatsii i filogenii) [Chaetiferous, turtle and fish leeches of the fauna of the world (System approach to classi fication and phylogeny)]. Avtoreferat Dissertatsii na Soiskanie Uchenoy Stepeni Doktora Biologicheskikh Nauk. Abstract of Doctoral Dissertation, Zoologicheskiy Institut AN SSSR, Leningrad, 40 pp.Google Scholar
  21. Felsenstein J. 1992. Review of Proceedings of the Michigan Morphometrics Workshop. Quart. Rev. Biol. 67: 418–419.CrossRefGoogle Scholar
  22. Felsenstein J. 2002. Quantitative characters, phylogenies and morphometrics, pp. 27-44. In: MacLeod N. & Forey P.L. (eds), Morphology, Shape and Pylogeny, Taylor & Francis Inc., New York, 320 pp. ISBN: 9780415240741Google Scholar
  23. Feyerabend P.K. 1993. Against Method. Verso, London, UK, 279 pp. ISBN: 0860916464, 9780860916468Google Scholar
  24. GarciaCruz J. & Sosa V. 2006. Coding quantitative character data for phylogenetic analysis: a comparison of five methods. Systematic Botany 31 (2): 302–309. DOI: 10.1600/036364406777585739CrossRefGoogle Scholar
  25. Goloboff P., Farris J. & Nixon K. 2003. Tree analysis using new technology. Program and documentation. Distributed by the authors. (accessed 31.06.2014)Google Scholar
  26. Goloboff P.A., Mattoni C.I. & Quinteros A.S. 2006. Continuous characters analyzed as such. Cladistics 22 (6): 589–601. DOI: 10.1111/j.1096-0031.2006.00122.xCrossRefGoogle Scholar
  27. GonzálezJosé R., Escapa I., Neves W.A., Cúneo R. & Pucciarelli H.M. 2008. Cladistic analysis of continuous moduralized traits provides phylogenetic signal in Homo evolution. Nature 453: 775–779. DOI: 10.1038/nature06891CrossRefGoogle Scholar
  28. Guerrero J.A., De Luna E. & SanchezHernandez C. 2003. Morphometrics in the quantification of character statě identity for the assessment of primary homology: an analysis of character variation of the genus Artibeus (Chiroptera: Phyllostomidae). Biol. J. Linn. Soc. 80 (1): 45–55. DOI: 10.1046/J.1095-8312.2003.00218.xCrossRefGoogle Scholar
  29. Hennig W. 1966. Phylogenetic Systematics. Univ. of Illinois Press, USA, 263 pp. ISBN-10: 0252068149, ISBN-13: 978-0252068140Google Scholar
  30. Humphries C.J. 2002. Homology, characters and continuous variables, pp. 8-26. In: MacLeod N. & Forey P.L. (eds), Morphology, Shape and Phylogeny, Taylor & Francis Inc., New York, 308 pp. ISBN: 0-415-24074-3.Google Scholar
  31. Lipscomb D., Platnick N. & Wheeler P. 2003. The intellectual content oftaxonomy: a comment on DNA taxonomy. Trends Ecol. Evol. 18 (2): 65–66. DOI: 10.1016/S0169-5347(02)00060-5CrossRefGoogle Scholar
  32. Lohmann G.P. & Schweitzer P.N. 1990. On eigenshape analysis, pp. 147-166. In: Rohlf F.J. & Bookstein F.L. (eds), Proceedings of the Michigan morphometrics workshop, University of Michigan, Museum of Zoology Special Publication no. 2. ISBN:0-9628499-0-lGoogle Scholar
  33. Lukin E.J. 1976. Pijavki presnykh i solenovatykh vodoiemov. Fauna SSSR, Pijavki Izdat. Nauka, Leningrad, 484 pp.Google Scholar
  34. Maddison W.P. & Maddison D.R. 2011. Mesquite: A modular system for evolutionary analysis. Version 2.75. (accessed 15.03.2012)Google Scholar
  35. Mann K.H. 1962. Leeches (Hirudinea). Their Structure, Physiology, Ecology and Embryology. International Series of Monographs on Pure and Applied Biology, Vol. 11. Pergamon Press, New York, 228 pp.Google Scholar
  36. Nesemann H. & Neubert E. 1999. Annelida, Clitellata: Branchiobdellida, Acanthobdellea, Hirudinea, pp. 1-178. In: Schwoerbel J. & Zwick P. (eds), Sufrwasserfauna von Mitteleuropa, Bd. 06/2, Spektrum, Heidelberg, 178 pp. ISBN-10: 3827409276, ISBN-13: 978-3827409270Google Scholar
  37. Oceguera-Figueroa A., Phillips A.J., PachecoChaves B., Reeves W.K. & Siddall M.E. 2011. Phylogeny of macrophagous leeches (Hirudinea, Clitellata) based on molecular data and evaluation of the barcoding locus. Zool. Ser. 40 (2): 194–203. DOI: 10.1111/j.1463-6409.2010.00465.xCrossRefGoogle Scholar
  38. Pawlowski L.K. 1936. Pijawki (Hirudinea). Fauna Sodkowodna Polski 26. Wydawnictwo Kasy Imienia Mianowskiego Instytutu Popierania Nauki, Warszawa, 176 pp.Google Scholar
  39. Perova S.N. 2011. Structural characteristics of the Caspian invader leech Archaeobdella esmonti Grimm in the Rybinsk Reservoir. Russ. J. Biol. Invas. 2(2-3): 223–226. DOI: 10.1134/S2075111711030106CrossRefGoogle Scholar
  40. Phillips A.J. & Siddall M.E. 2009. Polyparaphyly of Hirudinidae: many lineages of medicinal leeches. BMC Evol. Biol. 9: 246–256. DOI: 10.1186/1471-2148-9-246PubMedPubMedCentralCrossRefGoogle Scholar
  41. Pimental R.A. & Riggins R. 1987. The nature of cladistics data. Cladistics 3 (3): 201–209. DOI: 10.111/j.1096-0031.1987.tb00508.xCrossRefGoogle Scholar
  42. Rae T.C. 1998. The logical basis for the use of continuous characters in phylogenetic systematics. Cladistics 14 (3): 221–228. DOI: 10.1111/j.1096-0031.1998.tb00335.xCrossRefGoogle Scholar
  43. Rambaut A. 2008. FigTree v1.1.1: Tree figure drawing tool. figtree (accessed 15.03. 2012)Google Scholar
  44. Sawyer R.T. 1986. Leech Biology and Behaviour. Clarendon Press, Oxford, 1065 pp.Google Scholar
  45. Schols P., D’Hondt C., Geuten K., Merckx V., Janssens S. & Smets E. 2004. MorphoCode: coding quantitative data for phylogenetic analysis. Phylolnformatics 4: 1–4.Google Scholar
  46. Sereno P.C. 2007. Logical basis for morphological characters in phylogenetics. Cladistics 23 (6): 565–587. DOI: 10.1111/j.1096-0031.2007.00161.xGoogle Scholar
  47. Siddall M.E. 2002. Phylogeny of the leech family Erpobdellidae (Hirudinida: Oligochaeta). Invertebr. Syst. 16 (1): 1–6. DOI: 10.1071/IT0101CrossRefGoogle Scholar
  48. Siddall M.E. & Burreson E.M. 1995. Phylogeny of the Euhirudinea: Independent evolution of blood feeding by leeches? Can. J. Zool. 73 (6): 1048–1064. DOI: 10.1139/z95-125Google Scholar
  49. Siddall M.E. & Burreson E.M. 1996. Leeches (Oligochaeta?: Euhirudinea) their phylogeny and the evolution of live history strategies. Hydrobiologia 334 (1-3): 277–285. DOI: 10.1007/BF00017378Google Scholar
  50. Siddall M.E., Burreson E.M. 1998. Phylogeny of leeches (Hirudinea) based of mitochondrial cytochrome c oxidase subunit I. Mol. Phylogen. Evol. 9 (1): 156–162. DOI: 10.1006/mpev.1997.0455CrossRefGoogle Scholar
  51. Smith T.B., Freed L.A., Lepson J.K. & Carothers J.H. 1995. Evolutionary consequences of extinctions in populations of a Hawaiian honeyereeper Vestiaria coccineo,. Conserv. Biol. 9: 107–113. DOI: 10.1046/j. 1523-1739.1995.09010107.xGoogle Scholar
  52. Smith U.E. & Hendricks J.R. 2013. Geometrie morphometric character suites as phylogenetic data: extracting phylogenetic signál from gastropod shells. Syst. Biol. 62 (3): 366–385. DOI: 10.1093/sysbio/syt002PubMedCrossRefPubMedCentralGoogle Scholar
  53. Swofford D.L. 2002. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts, (accessed 12.02.2015)Google Scholar
  54. Swiderski D.L., Zelditch M.L. & Fink W.L. 1998. Why morphometrics isn’t special: coding quantitative data for phylogenetic analysis. Syst. Biol. 47: 508–519.PubMedPubMedCentralGoogle Scholar
  55. Swiderski D.L., Zelditch M.L. & Fink W.L. 2002. Comparability, morphometrics and phylogenetic systematics, pp. 67-99. In: MacLeod N. & Forey P.L. (eds), Morphology, Shape and Phylogeny, Systematics Association Special Volume Series 64, Taylor & Francis Inc., New York, 308 pp. ISBN: 0-415-24074-3Google Scholar
  56. Tautz D., Arctander P., Minelli A., Thomas R. & Vogler A. 2003. A plea for DNA taxonomy. Trends Ecol. Evol. 18 (2): 70–74. DOI: 10.1016/S0169-5347(02)00041-1CrossRefGoogle Scholar
  57. Thiele K. 1993. The holý grail of the perfect character: the cladistic treatment of morphometric data. Cladistics 9 (3): 295–304. DOI: 10.1111/j.1096-0031.1993.tb00226.xCrossRefGoogle Scholar
  58. Trontelj P. & Sket B. 2000. Molecular reassessment of some phylogenetic, taxonomie and biogeographic relationships between the leech genera Dino, and Trocheta (Hirudinea: Erpobdellidae). Hydrobiologia 438 (1-3): 227–235, DOI: 10.1023/A: 1004137300113CrossRefGoogle Scholar
  59. Trontelj P., Sket B. & Steinbrück G. 1999. Molecular phylogeny of leeches: congruence of nuclear and mitochondrial rDNA data sets and the origin of bloodsucking. J. Zool. Syst. Evol. Res. 37 (3): 141–147. DOI: 10.1111/j.1439-0469.1999.00114.xCrossRefGoogle Scholar
  60. Utevsky S.Y. & Trontelj P. 2004. Phylogenetic relationships of fish leeches (Hirudinea: Piscicolidae) based on mitochondrial DNA sequences and morphological data. Zool. Ser. 33 (4): 375–385. DOI: 10.1111/j.0300-3256.2004.00156.xCrossRefGoogle Scholar
  61. Wiens J.J. 2001. Character analysis in morphological phylogenetics: Problems and solutions. Syst. Biol. 50 (5): 689–699. DOI: 10.1080/106351501753328811PubMedCrossRefPubMedCentralGoogle Scholar
  62. Wiens J.J. 2004. The role of morphological data in phylogeny reconstruction. Syst. Biol. 53 (4): 653–661. DOI: 10.1080/10635150490472959PubMedCrossRefPubMedCentralGoogle Scholar
  63. Williams J.I. & Burreson E.M. 2006. Phylogeny of the fish leeches (Oligochaeta, Hirudinida, Piscicolidae) based on nuclear and mitochondrial genes and morphology. Zool. Ser. 35 (6): 627–639. DOI: 10.1111/j.1463-6409.2006.00246.xCrossRefGoogle Scholar

Copyright information

© Slovak Academy of Sciences 2015

Authors and Affiliations

  1. 1.Department of ZoologyUniversity of Warmia and Mazury in OlsztynOlsztynPoland

Personalised recommendations